

HINTS & SOLUTION

1. (d) Let A denotes the collection of all complex numbers whose square is a negative real number, then square of a complex number is a negative real number only if it has no real part and has only imaginary part.
Hence, $A = \{iy \mid y \in \mathbb{R}\}$.

2. (b) Since, the roots of $x^2 - 2mx + m^2 - 1 = 0$ lies between -2 and 4 i.e., $b^2 - 4ac \geq 0$ and $-2 < \frac{-b}{2a} < 4$
 $\therefore (2m)^2 - 4(m^2 - 1) \geq 0$ (i)

$$\text{and } -2 < \frac{2m}{2} < 4$$

$$\Rightarrow -2 < m < 4$$

From equation (i),

$$4m^2 - 4m^2 + 4 \geq 0$$

$$\Rightarrow m \in \mathbb{R}$$

$$\text{and } f(-2) > 0, \text{ also } f(4) > 0$$

$$4 + 4m + m^2 - 1 > 0, 16 - 8m + m^2 - 1 > 0$$

$$\Rightarrow m^2 + 4m + 3 > 0, m^2 - 8m + 15 > 0$$

$$\Rightarrow (m+1)(m+3) > 0, (m-3)(m-5) > 0$$

$$\Rightarrow -3 < m < -1 \text{ and } 3 < m < 5$$

Thus, the interval in which it lies is $-1 \leq m \leq 5$.

3. (a) Let first term and common difference of an AP are a and d respectively.

$$\text{Its } p^{\text{th}} \text{ term} = a + (p-1)d = q \quad \dots \text{(i)}$$

$$\text{and } q^{\text{th}} \text{ term} = a + (q-1)d = p \quad \dots \text{(ii)}$$

Solving Eqs. (i) and (ii), we find

$$a = p + q - 1, d = -1$$

4. (a) Let $\sqrt{\frac{1}{2} - i \frac{\sqrt{3}}{2}} = x + iy$

Squaring both sides,

$$\Rightarrow \frac{1}{2} - i \frac{\sqrt{3}}{2} = x^2 - y^2 - 2ixy$$

Comparing real and imaginary parts, we get

$$x^2 - y^2 = \frac{1}{2} \quad \dots \text{(i)}$$

$$\text{and } 2xy = \frac{\sqrt{3}}{2} \quad \dots \text{(ii)}$$

$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2 y^2$$

$$\Rightarrow (x^2 + y^2)^2 = \frac{1}{4} + \frac{3}{4} = 1$$

$$\Rightarrow x^2 + y^2 = 1 \quad \dots \text{(iii)}$$

On solving (i) and (ii), we get

$$x^2 = \frac{3}{4}, y^2 = \frac{1}{4}$$

$$\Rightarrow x = \pm \frac{\sqrt{3}}{2}, y = \pm \frac{1}{2}$$

$$\text{Thus, } \sqrt{\frac{1}{2} - i \frac{\sqrt{3}}{2}} = \pm \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$$

5. (d) There are total 8 letters in the word BASEBALL, in which we have 2B's, 2A's and 2L's.

$$\therefore \text{Required no. of permutations} = \frac{8!}{2! \times 2! \times 2!}$$

$$= \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{8} = 5040.$$

6. (a) Given equation is $px^2 + qx + r = p(x - \alpha)(x - \beta)$

$$\Rightarrow px^2 + qx + r = px^2 - p(\alpha + \beta)x + \alpha\beta p$$

$$\Rightarrow \alpha\beta p = r \text{ and } q = -(\alpha + \beta)p \quad \dots \text{(i)}$$

Also given that $p^3 + pq + r = 0$

Putting the value of q and r from (i), we get

$$\Rightarrow p^3 - p^2(\alpha + \beta) + \alpha\beta p = 0$$

$$\Rightarrow p^2 - p(\alpha + \beta) + \alpha\beta = 0$$

$$\Rightarrow (p - \alpha)(p - \beta) = 0$$

$$\Rightarrow \alpha = \beta = p$$

7. (d) Given that $F(n)$ = set of all divisors of n except 1.

$$\therefore F(20) = \{2, 4, 5, 10, 20\} \text{ and } F(16) = \{2, 4, 8, 16\}$$

$$\therefore F(20) \cap F(16) = \{2, 4, 5, 10, 20\} \cap \{2, 4, 8, 16\} = \{2, 4\}$$

$$\text{Also, } \{F(20) \cap F(16)\} \subseteq F(y)$$

So, least value of $y = 2$

8. (a) We have $(1.02)^8 = (1 + 0.02)^8$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

Here, $n = 8$ and $x = 0.02$

$$(1 + 0.02)^8 = 1 + 8 \times 0.02 + \frac{8 \times 7}{2!} (0.02)^2 + \frac{8 \times 7 \times 6}{3!} (0.02)^3 +$$

Neglecting higher terms,

$$= 1 + 0.16 + 28 \times 0.0004 + 56 \times 0.000008$$

$$\approx 1 + 0.16 + 0.0112 = 1.171$$

9. (c) Given that $a^x = b, b^y = c, c^z = a$

$$\Rightarrow c^z = b^{yz} = a \Rightarrow a^{xyz} = a$$

$$\Rightarrow xyz = 1$$

$$\text{Now, } \frac{1}{(xy + yz + zx)} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)$$

$$= \frac{1}{(xy + yz + zx)} \left(\frac{xy + yz + zx}{xyz} \right) = \frac{1}{xyz} = 1$$

10. (b) We have $0.\bar{2} + 0.2\bar{3}$

$$= \frac{2}{9} + \frac{23}{99} = \frac{22 + 23}{99} = \frac{45}{99} = 0.\overline{45}$$

11. (d) Given the extremities of a diameter of a circle as

$$(0, 0) \text{ and } \left(a^3, \frac{1}{a^3} \right), \text{ equation of circle is}$$

$$(x - 0)\left(x - a^3\right) + (y - 0)\left(y - \frac{1}{a^3}\right) = 0$$

$$\Rightarrow x^2 - xa^3 + y^2 - \frac{y}{a^3} = 0$$

$$\Rightarrow x^2 + y^2 - xa^3 - \frac{y}{a^3} = 0$$

Putting $x = \frac{1}{a}$ and $y = a$, the equation is satisfied.

Thus, the circle passes through the point $\left(\frac{1}{a}, a \right)$

12. (c) The equation of ellipse is given as:

$$\frac{x^2}{a^2} + \frac{y^2}{7} = 1$$

Eccentricity is given by $e = \sqrt{1 - \frac{7}{a^2}}$

\therefore foci of ellipse are $(\pm ae, 0)$ i.e. $\left(\pm a\sqrt{1 - \frac{7}{a^2}}, 0 \right)$

Now, the equation of given hyperbola is

$$\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25} \Rightarrow \frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$$

So, $a = \frac{12}{5}$ and $b = \frac{9}{5}$

$$\therefore e' = \sqrt{1 + \frac{81/25}{144/25}} = \sqrt{\frac{144+81}{144}} = \sqrt{\frac{225}{144}} = \frac{15}{12}$$

\therefore Foci of hyperbola is $\left(\pm \frac{12}{5} \cdot \frac{15}{12}, 0 \right)$ i.e. $(\pm 3, 0)$

Since, these foci coincides

$$3 = a\sqrt{1 - \frac{7}{a^2}} \Rightarrow \frac{3}{a} = \sqrt{1 - \frac{7}{a^2}}$$

$$\Rightarrow \frac{9}{a^2} = 1 - \frac{7}{a^2}$$

$$\Rightarrow \frac{16}{a^2} = 1 \Rightarrow a = 4$$

13. (c) Given that $\sin(\pi \cos x) = \cos(\pi \sin x)$

$$\text{So, } \cos\left(\frac{\pi}{2} - \pi \cos x\right) = \cos(\pi \sin x)$$

$$\Rightarrow \frac{\pi}{2} - \pi \cos x = \pi \sin x$$

$$\Rightarrow \sin x + \cos x = \frac{1}{2}$$

Squaring both sides, we get

$$\sin^2 x + \cos^2 x + 2 \sin x \cos x = \frac{1}{4}$$

$$\Rightarrow \sin 2x = \frac{1}{4} - 1 = -\frac{3}{4}$$

14. (c) Let E be the event of total of 12.

$$E = \left\{ \begin{array}{l} (2, 2, 2, 3, 3), (2, 2, 3, 3, 2), (2, 3, 3, 2, 2) \\ (3, 3, 2, 2, 2), (3, 2, 3, 2, 2), (3, 2, 2, 3, 2) \\ (3, 2, 2, 2, 3), (2, 3, 2, 3, 2), (2, 3, 2, 2, 3) \\ (2, 2, 3, 2, 3) \end{array} \right\}$$

$$\text{So, } n(E) = 10$$

Sample space contains a total of $2^5 = 32$ elements.

$$\text{Hence, } n(S) = 32$$

$$\text{So, } P(E) = \frac{n(E)}{n(S)} = \frac{10}{32} = \frac{5}{16}$$

15. (c) Here, $f(x^2) + 2 = x^2 + \frac{1}{x^2} + 2$

$$= \left(x + \frac{1}{x} \right)^2 = \{f(x)\}^2$$

$$\text{And } f(x^3) + 3f(x) = x^3 + \frac{1}{x^3} + 3 \left(x + \frac{1}{x} \right)$$

$$= \left(x + \frac{1}{x} \right)^3 = \{f(x)\}^3$$

Thus, both 1 and 2 are correct.

16. (a) Given equations are $y = \frac{8}{x^2 + 4}$ and $x + y = 2$

Putting value of y from 1st equation into 2nd equation

$$x + \frac{8}{x^2 + 4} = 2$$

$$\Rightarrow x^3 + 4x + 8 = 2x^2 + 8$$

$$\Rightarrow x^3 - 2x^2 + 4x = 0$$

$$\Rightarrow x(x^2 - 2x + 4) = 0$$

$$\Rightarrow x = 0 \quad [\text{The other value of } x \text{ is not real}]$$

17. (d) Since, Latus-rectum of an ellipse = $\frac{2b^2}{a}$

And minor axis = 2b

$$\therefore b = \frac{2b^2}{a} \Rightarrow a = 2b$$

$$\text{Also, } e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{4b^2}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

18. (c) We have $P(n, r) = 2520$ and $C(n, r) = 21$

$${}^n P_r = \frac{n!}{(n-r)!} = 2520 \quad \dots (\text{i})$$

$${}^n C_r = \frac{n!}{r!(n-r)!} = 21 \quad \dots (\text{ii})$$

Divide Eqs. (i) and (ii) we get

$$\Rightarrow r! = \frac{2520}{21} = 120$$

$$\Rightarrow r! = 5! \Rightarrow r = 5$$

$$\therefore {}^n C_r = 21 \Rightarrow {}^n C_5 = 21 \Rightarrow n = 7$$

$$\therefore C(n+1, r+1) = C(8, 6) = {}^8 C_6 = 28$$

19. (a) Let $z = 2\omega^2 + 3i$

Since, ω is the cube root of unity

$$\therefore \omega = \frac{-1 + \sqrt{3}i}{2} \text{ and } \omega^2 = \frac{-1 - \sqrt{3}i}{2}$$

$$\begin{aligned}\therefore z &= 2\omega^2 + 3i \\ &= 2\left[\frac{-1-\sqrt{3}i}{2}\right] + 3i \\ &= -1-\sqrt{3}i + 3i = -1+(3-\sqrt{3})i\end{aligned}$$

$$\begin{aligned}\therefore \bar{z} &= -1(3-\sqrt{3})i = -1+\sqrt{3}i - 3i = 2\left(\frac{-1+\sqrt{3}i}{2}\right) - 3i \\ &= 2\omega - 3i\end{aligned}$$

20. (c) Given equation is $x = 2^{1/3} - 2^{-1/3}$

On cubing both sides, we get

$$\begin{aligned}\Rightarrow x^3 &= (2^{1/3} - 2^{-1/3})^3 \\ \Rightarrow x^3 &= 2 - 2^{-1} - 3 \cdot 2^{1/3} \cdot 2^{-1/3} (2^{1/3} - 2^{-1/3}) \\ \Rightarrow x^3 &= -3x + 2 - \frac{1}{2} \Rightarrow x^3 = -3x + \frac{3}{2} \\ \Rightarrow 2x^3 + 6x &= 3\end{aligned}$$

21. (c) No. of people who are illiterates

$$= 15000 \times \frac{34.5}{100} = 5175$$

No. of people who have education up to primary school

$$= 15000 \times \frac{27}{100} = 4050$$

Similarly, no. of people who have education upto middle school = 2790

Let the no. of people who have education upto high school = x

\therefore According to the questions, no. of people who have education upto pre-university = $\frac{x}{2}$

So, total no. of people who are not graduates

$$= 5175 + 4050 + 2790 + x + \frac{x}{2} = 12150 + x + \frac{x}{2}$$

Since, 660 are graduates, therefore

$$\begin{aligned}15000 - \left(12150 + x + \frac{x}{2}\right) &= 660 \\ \Rightarrow 15000 - 660 &= 12150 + \frac{3x}{2} \\ \Rightarrow 2(15000 - 660) &= 24300 + 3x \\ \Rightarrow 28680 - 24300 &= 3x \\ \Rightarrow \frac{4380}{3} &= x \Rightarrow x = 1460\end{aligned}$$

Thus, 1460 students have education upto high school.

22. (c) Let $f : R \rightarrow R$ be defined as $f(x) = \frac{|x|}{x}$, $x \neq 0$

Also, $f(0) = 2$

i.e. value of function at $x = 0$ is 2.

$$\text{Consider, } f(x) = \begin{cases} \frac{x}{x} = 1 & \text{if } x > 0 \\ \frac{-x}{x} = -1 & \text{if } x < 0 \end{cases}$$

$$\therefore \text{we have } |x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases}$$

Thus, Range of $f(x) = \{1, -1, 2\}$

23. (b) Given that mid-point of $A(1, 2)$ and $B(x, y)$ is

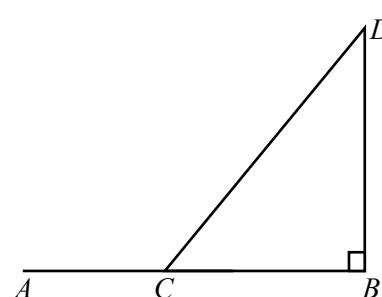
$C(2, 4)$,

$$\therefore \frac{1+x}{2} = 2 \text{ and } \frac{2+y}{2} = 4$$

$$\Rightarrow x = 3 \text{ and } y = 6$$

So, coordinates of B are $(3, 6)$

Given that $BD \perp AB$ and $CD = 3$ unit



$$BC = \sqrt{(2-3)^2 + (4-6)^2} = \sqrt{1+4} = \sqrt{5}$$

$$\text{In right angled } \Delta BCD, CD^2 = BC^2 + BD^2$$

$$\Rightarrow 9 = 5 + BD^2 \Rightarrow BD^2 = 4 \Rightarrow BD = 2 \text{ unit}$$

24. (b) Since, order of a set A is 3 and order of set B is 2.

$$\text{Therefore, } n(A) = 3 \text{ and } n(B) = 2$$

∴ Number of relations from A to B

$$= n(A) \times n(B) = 3 \times 2 = 6$$

25. (d) Since, r and s are the roots of $x^2 + px + q = 0$

$$\text{Then, } r+s = -p \text{ and } rs = q$$

$$\text{Now, } \frac{1}{r^2} + \frac{1}{s^2} = \frac{r^2 + s^2}{(rs)^2} = \frac{(r+s)^2 - 2rs}{(rs)^2}$$

$$= \frac{(-p)^2 - 2q}{q^2} = \frac{p^2 - 2q}{q^2}$$

26. (c) As given $1, x, y, z, 16$ are in geometric progression.

Let common ratio be r ,

$$x = 1 \cdot r = r$$

$$y = 1 \cdot r^2 = r^2$$

$$z = 1 \cdot r^3 = r^3$$

$$\text{and } 16 = 1 \cdot r^4 \Rightarrow 16 = r^4 \Rightarrow r = 2$$

$$\therefore x = 1 \cdot r = 2, y = 1 \cdot r^2 = 4, z = 1 \cdot r^3 = 8$$

$$\therefore x + y + z = 2 + 4 + 8 = 14$$

27. (d) Length of perpendicular from the origin on the straight line $x + 2by + 2p = 0$ is

$$\left| \frac{0 + 2b \times 0 - 2p}{\sqrt{1^2 + (2b)^2}} \right| = p$$

$$\text{or } p = \left| \frac{-2p}{\sqrt{1^2 + 4b^2}} \right|$$

$$\text{or } p^2 = \frac{4p^2}{1 + 4b^2}$$

$$\Rightarrow \frac{4}{1 + 4b^2} = 1$$

$$\Rightarrow 1 + 4b^2 = 4 \text{ or } 4b^2 = 3$$

$$\Rightarrow b^2 = \frac{3}{4} \Rightarrow b = \pm \frac{\sqrt{3}}{2} \Rightarrow b = \frac{\sqrt{3}}{2}$$

28. (a) Given equation is $\tan^2 B = \frac{1 - \sin A}{1 + \sin A}$

Applying componendo and dividend

$$\frac{1 + \tan^2 B}{1 - \tan^2 B} = \frac{2}{2 \sin A}$$

$$\Rightarrow \sin A = \frac{1 - \tan^2 B}{1 + \tan^2 B} \Rightarrow \sin A = \cos 2B$$

$$\Rightarrow \sin A = \sin \left(\frac{\pi}{2} - 2B \right)$$

$$\Rightarrow A = \frac{\pi}{2} - 2B \Rightarrow A + 2B = \frac{\pi}{2}$$

29. (b) Given that $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ (i)

$$\text{and } \cos^{-1} x + \cos^{-1} y = \frac{\pi}{3}$$

$$\Rightarrow \frac{\pi}{2} - \sin^{-1} x - \frac{\pi}{2} + \sin^{-1} y = \frac{\pi}{3}$$

$$\left[\text{since, } \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \right]$$

$$\Rightarrow -\sin^{-1} x + \sin^{-1} y = \frac{\pi}{3} \quad \dots \text{(ii)}$$

On solving Eqs. (i) and (ii), we get

$$2\sin^{-1} y = \pi \text{ and } 2\sin^{-1} y = \frac{\pi}{3}$$

$$\Rightarrow \sin^{-1} y = \frac{\pi}{2} \text{ and } \sin^{-1} y = \frac{\pi}{6}$$

$$\text{Hence, } y = \sin \frac{\pi}{2} \text{ and } x = \sin \frac{\pi}{6}$$

$$\Rightarrow x = \frac{1}{2} \text{ and } y = 1$$

30. (d) The given function is $f(x) = \frac{1}{\sqrt{18-x^2}}$.

$$\text{So, } f(3) = \frac{1}{\sqrt{18-9}} = \frac{1}{\sqrt{9}} = \frac{1}{3}$$

$$\Rightarrow \lim_{x \rightarrow 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \rightarrow 3} \frac{\frac{1}{\sqrt{18-x^2}} - \frac{1}{3}}{x - 3}$$

Putting $x = 3$ gives $\frac{0}{0}$ form, so apply L'Hospital's Rule

$$\begin{aligned} \lim_{x \rightarrow 3} \frac{f(x) - f(3)}{x - 3} &= \lim_{x \rightarrow 3} -\frac{1}{2} (18-x^2)^{-3/2} (-2x) \\ &= -\frac{1}{2} (18-9)^{-3/2} (-2 \times 3) \\ &= \frac{1}{27} (3) = \frac{1}{9} \end{aligned}$$

31. (a) Let α and β are the roots of $ax^2 + bx + c = 0$

$$\alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{c}{a}$$

$$\begin{aligned} \text{Consider, } \frac{\sqrt{\alpha}}{\sqrt{\beta}} + \frac{\sqrt{\beta}}{\sqrt{\alpha}} + \frac{\sqrt{c}}{\sqrt{a}} &= \frac{\alpha + \beta}{\alpha\beta} + \frac{\sqrt{b}}{\sqrt{a}} \\ &= \frac{-b/a}{\sqrt{b/a}} + \frac{\sqrt{b}}{\sqrt{a}} = -\frac{\sqrt{b}}{\sqrt{a}} + \frac{\sqrt{b}}{\sqrt{a}} \quad (\text{by rationalization}) \\ &= 0 \end{aligned}$$

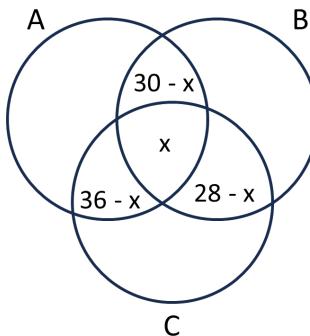
32. (a) Let the people who read all three papers A, B, and C be $x\%$.

So, people who read only A and B but not C = $(30-x)\%$

So, people who read only B and C but not A = $(28-x)\%$

So, people who read only A and C but not B = $(36-x)\%$

The Venn diagram is shown below:



Remaining numbers in circles can be filled as shown below:

People who read only A =

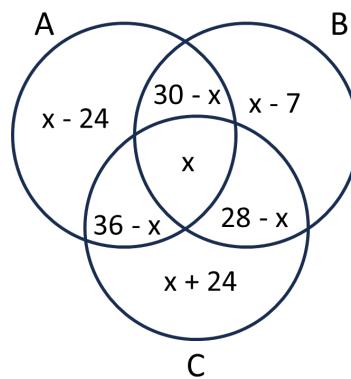
$$42 - (30-x + x + 36-x) = x - 24$$

People who read only B =

$$51 - (30-x + x + 28-x) = x - 7$$

People who read only C =

$$68 - (36-x + x + 28-x) = x + 4$$



Let $x\%$ people read all the three newspaper. Since 8% people do not read any newspapers.

$$\begin{aligned} (x-24) + (x-7) + (x+4) + (30-x) + (28-x) \\ + (36-x) + x = 92 \end{aligned}$$

$$\Rightarrow x + 98 - 31 = 92$$

$$\Rightarrow x + 67 = 92$$

$$\Rightarrow x = 92 - 67$$

$$\Rightarrow x = 25$$

So, people who read only two newspapers is given by

$$\begin{aligned} (30-x) + (28-x) + (36-x) &= 94 - 3x \\ &= 94 - 75 \\ &= 19 \end{aligned}$$

33. (a) Let $\alpha = \tan^{-1} x \Rightarrow \tan \alpha = x$

$$\text{Then } \cos \alpha = \frac{1}{\sqrt{1+\tan^2 \alpha}} = \frac{1}{\sqrt{1+x^2}}$$

$$\Rightarrow \cos(\tan^{-1} x) = \left\{ \frac{1}{\sqrt{1+x^2}} \right\}$$

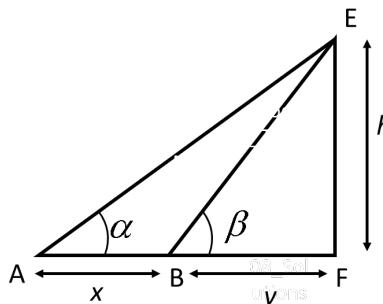
$$\text{So, } \cot^{-1} \{ \cos(\tan^{-1} x) \} = \cot^{-1} \left\{ \frac{1}{\sqrt{1+x^2}} \right\}$$

$$\text{Let } \cot^{-1} \left\{ \frac{1}{\sqrt{1+x^2}} \right\} = \beta \Rightarrow \cot \beta = \frac{1}{\sqrt{1+x^2}}$$

$$\text{and } \sin \beta = \frac{1}{\sqrt{1+\cot^2 \beta}} = \frac{\sqrt{1+x^2}}{\sqrt{x^2+1+1}} = \sqrt{\frac{x^2+1}{x^2+2}}$$

$$\Rightarrow \sin \left[\cot^{-1} \{ \cos(\tan^{-1} x) \} \right] = \sqrt{\frac{x^2+1}{x^2+2}}$$

34. (c) Let EF be the height of the tower, and EB = y, AB = x, and EF = h.



In $\triangle BEF$,

$$\tan \beta = \frac{EF}{BF}$$

$$\tan \beta = \frac{h}{y} \quad \dots \text{(i)}$$

and in $\triangle AFE$,

$$\tan \alpha = \frac{EF}{AF}$$

$$\tan \alpha = \frac{h}{x+y}$$

$$\tan \left(\frac{\pi}{2} - \beta \right) = \frac{h}{x+y} \quad \left(\because \alpha + \beta = \frac{\pi}{2} \right)$$

$$\Rightarrow \cot \beta = \frac{h}{x+y} \quad \dots \text{(ii)}$$

From (i) and (ii),

$$\tan \beta \cdot \cot \beta = \frac{h}{y} \times \frac{h}{x+y}$$

$$\Rightarrow xy + y^2 = h^2$$

35. (b) As given $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$

$$\Rightarrow \tan(\beta + \gamma) = \tan \alpha$$

$$\Rightarrow \frac{\tan \beta + \tan \gamma}{1 - \tan \beta \tan \gamma} = \tan \alpha$$

$$\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \alpha \tan \beta \tan \gamma$$

$$\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \alpha \cot \alpha \tan \gamma$$

$$\left(\because \beta + \alpha = \frac{\pi}{2} \Rightarrow \beta = \frac{\pi}{2} - \alpha \Rightarrow \tan \left(\frac{\pi}{2} - \alpha \right) = \cot \alpha \right)$$

$$\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \gamma$$

$$\Rightarrow \tan \beta + 2 \tan \gamma = \tan \alpha$$

36. (a) x and y are positive numbers.

$$x \leq y^2$$

Reflexive

$$x \leq x^2 \quad \forall \text{ positive numbers.}$$

Hence, relation is reflexive.

Transitive

$$x \leq y^2 \quad y \leq z^2$$

$$\text{Let } x = 5, y = 3, z = 2$$

$$5 \leq (3)^2 \quad (3) \leq (2)^2$$

$$\text{but } 5 \not\leq (2)^2$$

$$\text{Hence, } x \leq y^2 \quad y \leq z^2$$

$$\text{but } x \not\leq z^2$$

Thus, relation is not transitive.

Symmetric

$$1 \leq (2)^2 \text{ while } 2 \not\leq (1)^2$$

Hence relation is not symmetric.

Thus $x \leq y^2 \forall$ positive numbers is reflexive, but not transitive and symmetric.

37. (a) Let the point of intersection divide the line segment joining points $(3, -1)$ and $(8, 9)$ in $k:1$ ratio, then

$$\text{The point is } \left(\frac{8k+3}{k+1}, \frac{9k-1}{k+1} \right)$$

Since, this point lies of the line $y - x + 2 = 0$

$$\text{We have, } \frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$$

$$\Rightarrow \frac{9k-1-8k-3}{k+1} + 2 = 0 \Rightarrow \frac{k-4}{k+1} + 2 = 0$$

$$\Rightarrow k-4+2k+2=0 \Rightarrow 3k-2=0$$

$$\Rightarrow k = \frac{2}{3} \text{ i.e. } 2:3$$

38. (d) As given, $\tan \alpha = 2 \tan \beta$

$$\Rightarrow \frac{\tan \alpha}{\tan \beta} = 2 \Rightarrow \frac{\sin \alpha / \cos \alpha}{\sin \beta / \cos \beta} = 2$$

$$\Rightarrow \frac{\sin \alpha \cos \beta}{\cos \alpha \sin \beta} = 2$$

Using componendo and dividend, we get

$$\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\sin \alpha \cos \beta - \cos \alpha \sin \beta} = \frac{2+1}{2-1} = 3$$

$$\Rightarrow \frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)} = 3$$

$$\Rightarrow \sin(\alpha+\beta) = 3 \sin(\alpha-\beta)$$

39. (b) If any equation has $p - \sqrt{q}$ as a root, then another root will be $p + \sqrt{q}$.

$$\text{So, sum of roots} = p - \sqrt{q} + p + \sqrt{q} = 2p$$

$$\text{and product of roots} = (p - \sqrt{q})(p + \sqrt{q}) = p^2 - q$$

Now, required equation is

$$x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0$$

$$\Rightarrow x^2 - 2px + (p^2 - q) = 0$$

40. (c) Two joining points are (p, q) and $(q, -p)$

Mid-point of (p, q) and $(q, -p)$ is $\left(\frac{p+q}{2}, \frac{q-p}{2} \right)$

But it is given that the mid-point is $\left(\frac{r}{2}, \frac{s}{2} \right)$

$$\therefore \frac{p+q}{2} = \frac{r}{2} \text{ and } \frac{q-p}{2} = \frac{s}{2}$$

$$\Rightarrow p+q=r \text{ and } q-p=s$$

$$\begin{aligned} \text{Now, length of segment} &= \sqrt{(p-q)^2 + (q+p)^2} \\ &= \sqrt{s^2 + r^2} = (s^2 + r^2)^{1/2} \end{aligned}$$

41. (c) As given, $\sin 2A = \frac{4}{5}$

$$\Rightarrow \frac{2 \tan A}{1 + \tan^2 A} = \frac{4}{5} \quad \left[\because \sin 2A = \frac{2 \tan A}{1 + \tan^2 A} \right]$$

$$\Rightarrow 10 \tan A = 4 + 4 \tan^2 A$$

$$\Rightarrow 5 \tan A = 2 + 2 \tan^2 A$$

$$\Rightarrow 2 \tan^2 A - 5 \tan A + 2 = 0$$

$$\Rightarrow 2 \tan^2 A - 4 \tan A - \tan A + 2 = 0$$

$$\Rightarrow 2 \tan A (\tan A - 2) - 1 (\tan A - 2) = 0$$

$$\Rightarrow (2 \tan A - 1)(\tan A - 2) = 0$$

$$\Rightarrow \tan A = \frac{1}{2} \quad \left(\text{since } A \leq \frac{\pi}{4} \Rightarrow \tan A \neq 2 \right)$$

42. (a) We have $(1p101)_2 + (10q1)_2 = (100r00)_2$

$$\Rightarrow (1 \times 2^4 + p \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$$

$$+ (1 \times 2^3 + 0 \times 2^2 + q \times 2^1 + 1 \times 2^0)$$

$$= (1 \times 2^5 + 0 + 0 + r \times 2^2 + 0 + 0)$$

$$\Rightarrow 16 + 8p + 4 + 1 + 8 + 2q + 1 = 32 + 4r$$

$$\Rightarrow 30 + 8p + 2q = 32 + 4r$$

$$\Rightarrow 8p + 2q = 2 + 4r$$

From options, substitute $p = 0, q = 1, r = 0$, we get

$$0 + 2(1) = 2 + 0 \Rightarrow 2 = 2$$

43. (b) We have $\sin\left(\frac{5\pi}{12}\right) = \sin 75^\circ$

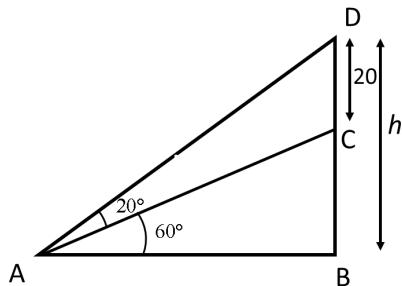
$$= \sin(45^\circ + 30^\circ)$$

$$= \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ$$

$$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3} + 1}{2} \right)$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

44. (b) The figure is given below:



In $\triangle ABD$,

$$\tan 60^\circ = \frac{BD}{AB}$$

$$\sqrt{3} = \frac{h}{AB}$$

$$AB = \frac{h}{\sqrt{3}}$$

$$AB = \frac{h\sqrt{3}}{3}$$

Now in $\triangle ABC$,

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow (20)^2 = \left(\frac{h}{\sqrt{3}}\right)^2 + (h - 20)^2$$

$$\Rightarrow h^2 + 3h^2 - 120h = 0$$

$$\Rightarrow 4h^2 - 120h = 0$$

$$\Rightarrow 4h(h - 30) = 0$$

$$\Rightarrow h = 0, 30$$

As $h = 0$ is not possible, we have $h = 30$ ft

45. (c) Given $\lim_{x \rightarrow 0} \frac{x \sin 5x}{\sin^2 4x}$

Multiple numerator and denominator by x

$$\lim_{x \rightarrow 0} \frac{x^2 \sin 5x}{x \sin^2 4x} = \lim_{x \rightarrow 0} \frac{\sin 5x}{x} \cdot \frac{x^2}{\sin^2 4x}$$

Rearranging to bring it in standard form,

$$\begin{aligned} & \lim_{x \rightarrow 0} \frac{5 \sin 5x}{5x} \cdot \frac{(4x)^2}{16 \sin^2 4x} \\ &= \frac{5}{16} \lim_{x \rightarrow 0} \frac{5 \sin 5x}{5x} \cdot \frac{1}{\lim_{x \rightarrow 0} \left(\frac{\sin 4x}{4x}\right)^2} = \frac{5}{16} \end{aligned}$$

46. (b) Since the roots of the equation

$$(a^2 + b^2)x^2 - 2b(a+c)x + (b^2 + c^2) = 0$$
 are equal, so discriminant is equal to 0.

$$[-2b(a+c)]^2 - 4(a^2 + b^2)(b^2 + c^2) = 0$$

$$\Rightarrow 4b^2(a+c)^2 = 4(a^2 + b^2)(b^2 + c^2)$$

$$\Rightarrow b^2(a^2 + c^2 + 2ac) = a^2b^2 + b^2c^2 + a^2c^2 + b^4$$

$$\Rightarrow a^2b^2 + b^2c^2 + 2acb^2 = a^2b^2 + b^2c^2 + a^2c^2 + b^4$$

$$\Rightarrow b^4 + a^2c^2 - 2acb^2 = 0$$

$$\Rightarrow (b^2 - ac)^2 = 0$$

$$\Rightarrow b^2 = ac$$

47. (c) Let the locus of a point be (h, k)

Let the given points be $P(m+n, n-m)$ and

$Q(m-n, n+m)$

∴ By distance formula, we have

$$\sqrt{[h-(m+n)]^2 + [k-(n-m)]^2} = \sqrt{[h-(m-n)]^2 + [k-(n+m)]^2}$$

$$\Rightarrow h^2 + (m+n)^2 - 2h(m+n) + k^2 + (n-m)^2 - 2k(n-m)$$

$$= h^2 + (m-n)^2 - 2h(m-n) + k^2 + (n+m)^2 - 2k(n+m)$$

$$\Rightarrow 2h(m-n-m-n) + 2k(n+m-n+m) = 0$$

$$\Rightarrow -4hn + 4km = 0 \Rightarrow mk = nh$$

Thus, locus of a point is $nx = my$

48. (c) Given, $\sin x + \sin y = a$ and $\cos x + \cos y = b$

$$\begin{aligned} \therefore a^2 + b^2 &= (\sin x + \sin y)^2 + (\cos x + \cos y)^2 \\ &= \sin^2 x + \sin^2 y + 2 \sin x \sin y + \cos^2 x + \cos^2 y \\ &\quad + 2 \cos x \cos y \\ &= (\sin^2 x + \cos^2 x) + (\sin^2 y + \cos^2 y) \\ &\quad + 2(\cos x \cos y + \sin x \sin y) \end{aligned}$$

$$= 1 + 1 + 2 \cos(x-y)$$

$$\Rightarrow 2 \cos(x-y) = a^2 + b^2 - 2$$

$$\Rightarrow \cos(x-y) = \frac{1}{2}(a^2 + b^2 - 2)$$

49. (c) Let $A(a, 0)$ and $B(0, b)$ be two points on x -axis

and y -axis respectively.

Given $(-5, 4)$ divides line AB in the ratio 1:2.

By section formula, we have

$$-5 = \frac{1 \times 0 + 2 \times a}{3} \Rightarrow a = \frac{-15}{2} \text{ and}$$

$$4 = \frac{1 \times b + 2 \times 0}{3} \Rightarrow b = 12$$

Thus, $A\left(\frac{-15}{2}, 0\right)$ and $B(0, 12)$

Hence, equation of line joining $\left(\frac{-15}{2}, 0\right)$ and $(0, 12)$ is

$$(y-0) = \frac{12-0}{0+\frac{15}{2}} \left(x + \frac{15}{2} \right)$$

$$\Rightarrow y = \frac{4}{5}(2x+15)$$

$$\Rightarrow 5y = (8x+60) \Rightarrow 8x - 5y + 60 = 0$$

50. (d) Given equation is $x^2 - 4x - \log_3 N = 0$

Since, roots are real

$$\therefore b^2 - 4ac = 0 \Rightarrow (4)^2 - 4(-\log_3 N) \geq 0$$

$$\Rightarrow 16 \geq -4 \log_3 N$$

$$\Rightarrow 4 \geq -\log_3 N$$

$$\Rightarrow 4 \geq \log_3 N^{-1}$$

$$\Rightarrow N^{-1} \geq 3^4 \geq 81$$

$$\Rightarrow N \geq \frac{1}{81}$$

So, minimum value of N is $\frac{1}{81}$

51. (d) Let $f(x) = \log_{10}(1+x)$

$$\therefore 4f(4) + 5f(1) - \log_{10} 2$$

$$= 4\log_{10}(1+4) + 5\log_{10}(1+1) - \log_{10} 2$$

$$= 4\log_{10} 5 + 5\log_{10} 2 - \log_{10} 2$$

$$= 4\log_{10} 5 + 4\log_{10} 2$$

$$= 4(\log_{10} 5 + \log_{10} 2)$$

$$= 4(\log_{10} 10)$$

$$= 4 \quad \left\{ \because \log_a a = 1 \right\}$$

52. (a) Given that, $\sec A + \tan A = p$

$$\Rightarrow \frac{1}{\cos A} + \frac{\sin A}{\cos A} = p$$

$$\Rightarrow \frac{1 + \sin A}{\cos A} = p$$

$$\Rightarrow \frac{(1 + \sin A)^2}{\cos^2 A} = p^2$$

$$\Rightarrow \frac{(1 + \sin A)^2}{1 - \sin^2 A} = p^2$$

$$\Rightarrow \frac{(1 + \sin A)^2}{(1 - \sin A)(1 + \sin A)} = p^2$$

$$\Rightarrow \frac{1 + \sin A}{1 - \sin A} = p^2$$

Using componendo and dividend, we get

$$\Rightarrow \frac{(1 + \sin A) + (1 - \sin A)}{(1 + \sin A) - (1 - \sin A)} = \frac{p^2 + 1}{p^2 - 1}$$

$$\Rightarrow \frac{2}{2 \sin A} = \frac{p^2 + 1}{p^2 - 1}$$

$$\Rightarrow \sin A = \frac{p^2 - 1}{p^2 + 1}$$

53. (b) Let p and q are the roots of the equation

$$x^2 - 30x + 221 = 0$$

$$\Rightarrow x^2 - 13x - 17x + 17 \times 13 = 0$$

$$\Rightarrow (x - 13)(x - 17) = 0$$

$$\therefore p = 13 \text{ and } Q = 17$$

$$\therefore p^3 + q^3 = 2197 + 4913 = 7110$$

54. (c) Since, the straight lines $x - 2y = 0$ and $kx + y = 1$

intersect at the point $\left(1, \frac{1}{2}\right)$

\therefore The point $\left(1, \frac{1}{2}\right)$ satisfies the equation $kx + y = 1$

\therefore Put $x = 1$ and $y = \frac{1}{2}$ in equation $kx + y = 1$

$$\text{we get } k \cdot 1 + \frac{1}{2} = 1 \Rightarrow k = \frac{1}{2}$$

55. (c) Given that, $\sin^2 x + \sin^2 y = 1$

$$\Rightarrow \sin^2 x = 1 - \sin^2 y$$

$$\Rightarrow \sin^2 x = \cos^2 y$$

$$\Rightarrow \sin x = \cos y$$

Similarly by considering $\sin^2 y = 1 - \sin^2 x$, we have
 $\cos x = \sin y$

$$\text{Now, Consider } \cot(x + y) = \frac{\cos(x + y)}{\sin(x + y)}$$

$$= \frac{\cos x \cos y - \sin x \sin y}{\sin(x + y)}$$

$$= \frac{\cos x \cos y - \cos x \cos y}{\sin(x + y)} = 0$$

56. (b) $f(x) = \sqrt{x}(7x - 6) = 7x^{3/2} - 6x^{1/2}$

Differentiate both sides wrt x

$$f'(x) = 7 \times \frac{3}{2}x^{1/2} - 6 \times \frac{1}{2}x^{-1/2}$$

When the tangent is parallel to x -axis, $f'(x) = 0$

$$7 \times \frac{3}{2}x^{1/2} - 6 \times \frac{1}{2}x^{-1/2} = 0$$

$$\Rightarrow \frac{21}{2}x^{1/2} - 3x^{-1/2} = 0$$

$$\Rightarrow \frac{21}{2}\sqrt{x} = \frac{3}{\sqrt{x}}$$

$$\Rightarrow 7x = 2$$

$$\Rightarrow x = \frac{2}{7}$$

57. (c) Let $I = \int \sec x \cosec x dx = \int \frac{2}{2 \sin x \cos x} dx$

$$\begin{aligned}
 I &= \int \frac{2}{\sin 2x} dx \\
 &= 2 \int \frac{1}{2 \tan x} dx \\
 &= \int \frac{\sec^2 x}{\tan x} dx
 \end{aligned}$$

Let $\tan x = t \Rightarrow \sec^2 x dx = dt$

$$\therefore I = \int \frac{dt}{t} = \log|t| + c$$

Comparing with $\int \sec x \cosec x dx = \log|g(x)| + c$, we get $g(x) = \tan x$

58. (c) Given $f(x) = \frac{1}{1-|1-x|}$

$$\begin{aligned}
 \text{LHL} &= \lim_{h \rightarrow 0} \frac{1}{1-|1-(1-h)|} \\
 &= \lim_{h \rightarrow 0} \frac{1}{1-|h|} \\
 &= \lim_{h \rightarrow 0} \frac{1}{1-h} = 1
 \end{aligned}$$

$$\begin{aligned}
 \text{RHL} &= \lim_{h \rightarrow 0} \frac{1}{1-|1-(1+h)|} \\
 &= \lim_{h \rightarrow 0} \frac{1}{1-|-h|} \\
 &= \lim_{h \rightarrow 0} \frac{1}{1-h} = 1
 \end{aligned}$$

$$\therefore \lim_{x \rightarrow 0} f(x) = 1$$

59. (a) Given $\sin x \cos y = \frac{1}{2}$

Differentiating both the sides w.r.t. x

$$\sin x (-\sin y) \frac{dy}{dx} + \cos y \cos x = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos x \cos y}{\sin x \sin y} = \cot x \cot y$$

$$\frac{d^2y}{dx^2} = -\cosec^2 x \cot y + \cot x (-\cosec^2 y) \frac{dy}{dx}$$

For the given point, $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$

$$\frac{dy}{dx} = \cot \frac{\pi}{4} \cot \frac{\pi}{4} = 1$$

This gives,

$$\begin{aligned}
 \frac{d^2y}{dx^2} &= -\cosec^2 \frac{\pi}{4} \cot \frac{\pi}{4} + \cot \frac{\pi}{4} \left(-\cosec^2 \frac{\pi}{4}\right) \\
 &= -(2)(1) + (1)(-1) \\
 &= -4
 \end{aligned}$$

60. (d) Given equation of the line $\frac{x}{4} + \frac{y}{3} = 1$ can be written

as

$$3x + 4y = 12 \Rightarrow 4y = -3x + 12$$

$$\Rightarrow y = -\frac{3}{4}x + \frac{12}{4}$$

The slope of the line $\frac{x}{4} + \frac{y}{3} = 1$ is $-\frac{3}{4}$

\therefore Slope of the line perpendicular to this line

$$= -\left(\frac{-1}{3/4}\right) = \frac{4}{3}$$

61. (c) Given function is $f(x) = A \sin\left(\frac{\pi x}{2}\right) + B$.

Differentiating it w.r.t x

$$f'(x) = A \cos\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}$$

$$f'\left(\frac{1}{2}\right) = \sqrt{2} \Rightarrow A \cos\left(\frac{\pi}{4}\right) \cdot \frac{\pi}{2} = \sqrt{2}$$

$$\Rightarrow A \frac{1}{\sqrt{2}} \cdot \frac{\pi}{2} = \sqrt{2}$$

$$\Rightarrow A = \frac{\sqrt{2} \times \sqrt{2} \times 2}{\pi}$$

$$\Rightarrow A = \frac{4}{\pi}$$

$$\begin{aligned}
 \text{Given, } \int_0^1 f(x) dx &= \frac{2A}{\pi} \\
 \Rightarrow \int_0^1 \left\{ A \sin\left(\frac{\pi x}{2}\right) + B \right\} dx &= \frac{2}{\pi} \times \frac{4}{\pi} \\
 \Rightarrow \left[-A \cos\left(\frac{\pi x}{2}\right) \cdot \frac{2}{\pi} + Bx \right]_0^1 &= \frac{8}{\pi^2} \\
 \Rightarrow \left[-\frac{4}{\pi} \cos\left(\frac{\pi x}{2}\right) \cdot \frac{2}{\pi} + Bx \right]_0^1 &= \frac{8}{\pi^2} \\
 \Rightarrow -\frac{8}{\pi^2} \left(\cos\frac{\pi}{2} - \cos 0 \right) + B &= \frac{8}{\pi^2} \\
 \Rightarrow \frac{8}{\pi^2} + B &= \frac{8}{\pi^2} \\
 \Rightarrow B &= 0
 \end{aligned}$$

$$62. (a) \text{ Let } f(x) = \begin{cases} \frac{x^3 - 3x + 2}{(x-1)^2} & \text{for } x \neq 1 \\ k & \text{for } x = 1 \end{cases}.$$

and $f(x)$ is continuous

$$\therefore \lim_{x \rightarrow 1} f(x) = f(1) = k$$

$$\Rightarrow \lim_{x \rightarrow 1} \frac{x^3 - 3x + 2}{(x-1)^2} = k$$

$$\Rightarrow \lim_{x \rightarrow 1} \frac{3x^2 - 3}{2(x-1)} = k \quad [\text{By L'Hospital's Rule}]$$

$$\Rightarrow \lim_{x \rightarrow 1} \frac{6x}{2} = k \quad [\text{By L'Hospital's Rule}]$$

$$\Rightarrow \frac{6}{2} = k$$

$$\Rightarrow 3 = k$$

$$63. (c) \text{ Given } f(x) = \frac{x-1}{x+1} \Rightarrow x = \frac{1+f(x)}{1-f(x)}$$

$$\begin{aligned}
 \Rightarrow f(2x) &= \frac{2x-1}{2x+1} \\
 &= \frac{2 \left[\frac{1+f(x)}{1-f(x)} \right] - 1}{2 \left[\frac{1+f(x)}{1-f(x)} \right] + 1} \\
 &= \frac{2+2f(x)-1+f(x)}{2+2f(x)+1-f(x)} \\
 &= \frac{3f(x)+1}{f(x)+3}
 \end{aligned}$$

$$64. (d) \text{ Given integral is } I = \int_0^1 (x-1)e^{-x} dx$$

Integrating by parts taking $x-1$ as the first function.

$$\begin{aligned}
 I &= \left[-(x-1)e^{-x} \right]_0^1 - \int_0^1 1 \cdot (-e^{-x}) dx \\
 &= -(1-1) \frac{1}{e} + (-1)e^0 + \left[-e^{-x} \right]_0^1 \\
 &= -1 - \left(\frac{1}{e} - 1 \right) = -\frac{1}{e}
 \end{aligned}$$

65. (a) A matrix is singular if value of its determinant is zero.

Given that matrix $\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is singular.

$$\Rightarrow \begin{vmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = 0$$

$$\Rightarrow \cos^2 \theta - \sin^2 \theta = 0 = \cos \frac{\pi}{2}$$

$$\Rightarrow \cos 2\theta = \cos \frac{\pi}{2}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

66. (a) We know that if

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \text{ then } \text{Adj } A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

and $|A| = ad - bc$

$$A^{-1} = \frac{\text{Adj } A}{|A|}, |A| \neq 0$$

$$\text{So, } A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\text{Given that } A = \begin{bmatrix} 1+i & 1+i \\ -1+i & 1-i \end{bmatrix}$$

Then,

$$\text{Adj } A = \begin{bmatrix} 1-i & -1-i \\ 1-i & 1+i \end{bmatrix}$$

$$|A| = \begin{vmatrix} 1+i & 1+i \\ -1+i & 1-i \end{vmatrix}$$

$$= (1 - i^2) - (i^2 - 1)$$

$$= 1 - i^2 - i^2 + 1$$

$$= 1 + 1 + 1 + 1$$

$$= 4$$

$$\text{Thus, } A^{-1} = \frac{1}{4} \begin{bmatrix} 1-i & -1-i \\ 1-i & 1+i \end{bmatrix}$$

67. (d) Let $y = 2x^2 - 3x + 5$

$$\Rightarrow \frac{dy}{dx} = 4x - 3 \text{ and } \frac{d^2y}{dx^2} = 4$$

For maximum or minimum value of y ,

$$\frac{dy}{dx} = 0$$

$$\Rightarrow 4x - 3 = 0$$

$$\Rightarrow x = \frac{3}{4}$$

$$\text{For every value of } x, \frac{d^2y}{dx^2} > 0$$

So, minimum value of $y = 2x^2 - 3x + 5$ occurs at $x = \frac{3}{4}$

$$\text{Minimum value} = 2\left(\frac{3}{4}\right)^2 - 3\left(\frac{3}{4}\right) + 5 = \frac{9}{8} - \frac{9}{4} + 5 = \frac{31}{8}$$

68. (a) Let the given integral be $I = \int_a^b \frac{\log x}{x} dx$

$$\text{Put } \log x = t \Rightarrow \frac{dx}{x} = dt$$

When $x = a, t = \log a$ and for $x = b, t = \log b$

$$\therefore I = \int_{\log a}^{\log b} t dt$$

$$= \left[\frac{t^2}{2} \right]_{\log a}^{\log b}$$

Substitute the limits,

$$\therefore I = \frac{1}{2} \left[(\log b)^2 - (\log a)^2 \right]$$

$$= \frac{1}{2} (\log b + \log a)(\log b - \log a)$$

$$= \frac{1}{2} (\log ba) \left(\log \frac{b}{a} \right)$$

$$69. (b) \text{ Given } f(x) = \begin{cases} \frac{\tan kx}{x} & \text{for } x < 0 \\ 3x + 2k^2 & \text{for } x \geq 0 \end{cases}$$

When the given function is continuous at $x = 0$, then

$$\lim_{x \rightarrow 0^-} f(x) = \lim_{x \rightarrow 0^+} f(x) = f(0)$$

Now,

$$\lim_{x \rightarrow 0^-} f(x) = \lim_{h \rightarrow 0} f(0-h)$$

$$= \lim_{h \rightarrow 0} \left[\frac{\tan k(0-h)}{0-h} \right]$$

$$= \lim_{h \rightarrow 0} \frac{\tan kh}{h}$$

$$\begin{aligned}\lim_{x \rightarrow 0^+} f(x) &= \lim_{h \rightarrow 0} f(0+h) \\ &= \lim_{h \rightarrow 0} [3(0+h) + 2k^2] \\ &= \lim_{h \rightarrow 0} [3h + 2k^2] = 2k^2\end{aligned}$$

This gives,

$$\begin{aligned}\lim_{h \rightarrow 0} \frac{\tan kh}{h} &= 2k^2 \\ \Rightarrow k \lim_{h \rightarrow 0} \frac{\tan kh}{kh} &= 2k^2 \\ \Rightarrow k &= 2k^2 \left[\because \lim_{x \rightarrow 0} \frac{\tan x}{x} = 0 \right] \\ \Rightarrow k &= \frac{1}{2}\end{aligned}$$

70. (c) Given that $y^2 = p(x)$.

Differentiating, we get

$$\begin{aligned}\Rightarrow 2yy_1 &= p'(x) \\ \Rightarrow 2y_1 &= \frac{p'(x)}{y}\end{aligned}$$

Differentiating again,

$$\begin{aligned}2y_2 &= \frac{yp''(x) - p'(x)y_1}{y^2} \\ \Rightarrow 2y_2 &= \frac{yp''(x) - p'(x)\frac{p'(x)}{2y}}{y^2} \\ \Rightarrow 2y_2 &= \frac{2y^2 p''(x) - (p'(x))^2}{2y^3} \\ \Rightarrow 2y^3 y_2 &= \frac{1}{2} \left[2p(x)p''(x) - (p'(x))^2 \right] \\ \Rightarrow 2 \frac{d}{dx} (y^3 y_2) &= \frac{1}{2} \left[2p'(x)p''(x) + 2p(x)p'''(x) - 2p'(x)p''(x) \right] \\ &= p(x)p'''(x)\end{aligned}$$

71. (b) We know that $A^{-1} = \frac{\text{Adj } A}{|A|}$, $|A| \neq 0$

$$\text{or, } AA^{-1} = \frac{A \text{Adj } A}{|A|}$$

$$\text{or, } I_n = \frac{A \text{Adj } A}{|A|}$$

$$\Rightarrow A(\text{Adj } A) = |A|I_n$$

$$\begin{aligned}&= |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}\end{aligned}$$

72. (b) Consider the line $x \cos \theta + y \sin \theta = 2$

$$\begin{aligned}\Rightarrow y \sin \theta &= -x \cos \theta + 2 \\ \Rightarrow y &= -x \frac{\cos \theta}{\sin \theta} + \frac{2}{\sin \theta} \\ \Rightarrow y &= -x \cot \theta + \frac{2}{\sin \theta}\end{aligned}$$

On comparing this equation with $y = mx + c$,
Slope of the line $x \cos \theta + y \sin \theta = 2$ is $-\cot \theta$

Also, we have line $x - y = 3$

$$\Rightarrow y = x - 3$$

Slope of the line $x - y = 3$ is 1.

Since both the lines are perpendicular to each other,

Product of their slopes = -1

$$\Rightarrow (-\cot \theta) \times 1 = -1$$

$$\Rightarrow \cot \theta = 1$$

$$\Rightarrow \cot \theta = \cot \frac{\pi}{4}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

73. (c) Probability of getting a spade = $\frac{13}{52}$

Probability of getting a ace = $\frac{4}{52}$

and probability of getting a spade ace = $\frac{1}{52}$

So, required probability = $\frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$

Odd against his winning = $\frac{1 - \frac{4}{13}}{\frac{4}{13}} = \frac{9}{4}$

74. (c) The given vector is $\vec{V} = 2\hat{i} - \hat{j} + 2\hat{k}$ and for z -axis,

$$x = 0, y = 0.$$

So, the vector equation is,

$$\vec{A} = 0\hat{i} + 0\hat{j} + \hat{k}$$

$$\cos \alpha = \frac{\vec{V} \cdot \vec{A}}{\|\vec{V}\| \|\vec{A}\|}$$

$$\cos \alpha = \frac{2 \cdot 0 + (-1) \cdot 0 + 2 \cdot 1}{\sqrt{4+1+4} \sqrt{0+0+1}} = \frac{2}{3}$$

Hence,

$$\begin{aligned} \sin \alpha &= \sqrt{1 - \cos^2 \alpha} \\ &= \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \end{aligned}$$

75. (c) For $-1 \leq x \leq 2$

$$f(x) = 3x^2 + 12x - 1$$

$$f'(x) = 6x + 12$$

If we take any point in the interval $[-1, 2]$, then

$$f'(1) = 6 \times 1 + 12 = 18 > 0$$

$\Rightarrow f(x)$ is increasing in the interval $[-1, 2]$

For $2 < x \leq 3$

$$f(x) = 37 - x$$

$$f'(x) = -1 < 0$$

$\Rightarrow f(x)$ is decreasing in the interval $(2, 3]$

76. (c) Given $x = \cos t, y = \sin t$

$$\Rightarrow \frac{dx}{dt} = -\sin t \text{ and } \frac{dy}{dt} = \cos t$$

$$\begin{aligned} \Rightarrow \frac{dy}{dx} &= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\cos t}{-\sin t} = -\cot t \\ \Rightarrow \frac{d^2y}{dx^2} &= \operatorname{cosec}^2 t \frac{dt}{dx} = \operatorname{cosec}^2 t \cdot \frac{1}{-\sin t} = -\frac{1}{\sin^3 t} \\ \Rightarrow \frac{d^2y}{dx^2} &= -\frac{1}{y^3} = -y^{-3} \end{aligned}$$

77. (c) Let the volume of the box be V .

$$\begin{aligned} V(x) &= (24 - 2x)(9 - 2x) \cdot x \\ &= (216 - 48x - 18x + 4x^2) \cdot x \\ &= 4x^3 - 66x^2 + 216x \end{aligned}$$

$$\Rightarrow V'(x) = 12x^2 - 132x + 216$$

$$\text{For maximum value, } V'(x) = 0$$

$$12x^2 - 132x + 216 = 0$$

$$\Rightarrow 12(x^2 - 11x + 18) = 0$$

$$\Rightarrow 12(x-2)(x-9) = 0$$

$$\Rightarrow x = 2, 9$$

Here $x = 9$ is not possible. So, $x = 2$.

$$\text{Also, } V''(x) = 24x - 132$$

$$V''(2) = 48 - 132 = -84 < 0$$

This implies that the volume is maximum when $x = 2$.

78. (d) Given equations are:

$$x - y + 2z = 0 \quad \dots \text{(i)}$$

$$kx - y + z = 0 \quad \dots \text{(ii)}$$

$$3x + y - 3z = 0 \quad \dots \text{(iii)}$$

System of equations possess a unique solution if

$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ k & -1 & 1 \\ 3 & 1 & -3 \end{vmatrix} \neq 0 \quad \dots (i)$$

Applying, $C_1 \rightarrow C_1 + C_2$ and $C_2 \rightarrow C_2 + \frac{1}{2}C_3$

$$|A| = \begin{vmatrix} 0 & 0 & 2 \\ k-1 & -\frac{1}{2} & 1 \\ 4 & -\frac{1}{2} & -3 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 0 & 0 & 2 \\ k-1 & -1 & 1 \\ 4 & -1 & -3 \end{vmatrix}$$

Expanding along Row 1,

$$\begin{aligned} |A| &= \frac{1}{2} \times 2 [(k-1)(-1) - 4(-1)] \\ &= -k + 1 + 4 \\ &= -k + 5 \end{aligned}$$

Now, from (i), $-k + 5 \neq 0 \Rightarrow k \neq 5$

79. (b) The given function

$$\begin{aligned} f(x) &= (\log_{\tan x} \cot x)(\log_{\cot x} \tan x)^{-1} \\ &= \left(\frac{\log \cot x}{\log \tan x} \right) \left(\frac{\log \tan x}{\log \cot x} \right)^{-1} \\ &= \left(\frac{\log \cot x}{\log \tan x} \right) \left(\frac{\log \cot x}{\log \tan x} \right) \\ &= \left(\frac{\log \cot x}{\log \tan x} \right)^2 \\ &= \left(\frac{\log \frac{1}{\tan x}}{\log \tan x} \right)^2 = \left(-\frac{\log \tan x}{\log \tan x} \right)^2 = 1 \end{aligned}$$

$\Rightarrow f(x) = 1$ (Constant function)

$\Rightarrow f'(x) = 1$

This is true for $0 < x < \frac{\pi}{2}$

$$\Rightarrow f'\left(\frac{\pi}{4}\right) = 0$$

80. (d) Given differential equation is

$$\frac{dy}{dx} = 1 + x + y^2 + xy^2$$

$$\Rightarrow \frac{dy}{dx} = (1+x)(1+y^2)$$

Separate the variables

$$\frac{dy}{1+y^2} = (1+x)dx$$

$$\Rightarrow \int \frac{dy}{1+y^2} = \int (1+x)dx$$

$$\Rightarrow \tan^{-1} y = \frac{x^2}{2} + x + C$$

Given that when $x = 0, y = 0$, then $C = 0$

$$\Rightarrow y = \tan\left(\frac{x^2}{2} + x\right)$$

81. (b) Total number of possible arrangements, $n(S) = 6!$

Since 2 and 3 occupy consecutive places, so, they are grouped together.

So, there will be $5!$ such arrangements. But 2 and 3 can be arranged in themselves in $2!$ ways.

$$\text{So, required probability} = \frac{5! \times 2!}{6!} = \frac{2}{6} = \frac{1}{3}$$

82. (c) Given that $A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$

$$\therefore A^2 = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1+4 & 2+4 \\ 2+4 & 4+4 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 6 & 8 \end{bmatrix}$$

Let $A^2 + xA + yI = 0$, where x and y are constant

$$\Rightarrow \begin{bmatrix} 5 & 6 \\ 6 & 8 \end{bmatrix} + x \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} + y \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 5+x+y & 6+2x \\ 6+2x & 8+2x+y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

So, $6+2x=0 \Rightarrow x=-3$

Now, $5+x+y=0 \Rightarrow 5-3+y=0 \Rightarrow y=-2$

This means that $A^2 - 3A - 2I = 0$

83. (b) Given equation,

$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$

This can be re-written as,

$$x\sqrt{1+y} = -y\sqrt{1+x}$$

Squaring both sides, we get

$$x^2(1+y) = y^2(1+x)$$

$$\Rightarrow x^2 + x^2y = y^2 + y^2x$$

$$\Rightarrow x^2 - y^2 = y^2x - x^2y$$

$$\Rightarrow (x+y)(x-y) = xy(x-y)$$

$$\Rightarrow x+y = -xy$$

$$\Rightarrow y(1+x) = -x$$

$$\Rightarrow y = \frac{-x}{1+x}, \text{ which is in explicit form}$$

Differentiating both sides,

$$\frac{dy}{dx} = \frac{(1+x)(-1) + x(1)}{(1+x)^2} = \frac{-1}{(1+x)^2}$$

84. (b) There are 7 days in a week. If 1st person's birth day falls on any day out of 7.

So, probability is $\frac{7}{7}$.

Since birthday of second person will fall on any of the remaining six days, then its probability is $\frac{6}{7}$

Birthday of 3rd person will fall on any of the remaining 5 days, so, its probability is $\frac{5}{7}$.

This means that the probability that all three persons will have different day as their birthday

$$= \frac{7}{7} \times \frac{6}{7} \times \frac{5}{7} = \frac{30}{49} = 0.612 \approx 0.60$$

85. (a) Given $x = \sin t - t \cos t$ and $y = t \sin t + \cos t$.

$$\Rightarrow \frac{dx}{dt} = \cos t - \{\cos t + t(-\sin t)\}$$

$$= \cos t - \cos t + t \sin t$$

$$= t \sin t$$

$$\Rightarrow \frac{dy}{dt} = t \cos t + \sin t - \sin t$$

$$= t \cos t$$

This gives,

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{t \cos t}{dt}}{\frac{t \sin t}{dt}} = \cot t$$

$$= t \cos t$$

$$\Rightarrow \frac{dy}{dx} \Big|_{t=\frac{\pi}{2}} = \cot \frac{\pi}{2} = 0$$

86. (d) Given $\vec{a} = 2\hat{i} - 3\hat{k}$, $\vec{b} = \hat{j} + 3\hat{k}$ and $\vec{c} = -3\hat{i} + 3\hat{j} + \hat{k}$.

$$\text{Let } \vec{n} = x\hat{i} + y\hat{j} + z\hat{k}.$$

Since \vec{a} and \vec{n} are perpendicular to each other,

$$\vec{a} \cdot \vec{n} = 0 \Rightarrow (2\hat{i} - 3\hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 0$$

$$\Rightarrow 2x - 3z = 0 \quad \dots(\text{i})$$

Also, \vec{b} and \vec{n} are perpendicular to each other,

$$\vec{b} \cdot \vec{n} = 0 \Rightarrow (\hat{j} + 3\hat{k}) \cdot (x\hat{i} + y\hat{j} + z\hat{k}) = 0$$

$$\Rightarrow y + 3z = 0 \quad \dots(\text{ii})$$

On solving equations (i) and (ii),

$$y = z = 0$$

Since $\vec{n} = x\hat{i} + y\hat{j} + z\hat{k}$ is a unit vector,

$$\sqrt{x^2 + y^2 + z^2} = 1 \Rightarrow x = 1 \quad (\because y = z = 0)$$

$$\text{Hence, } \vec{n} = \hat{i}$$

$$\text{This gives, } \vec{c} \cdot \vec{n} = (-3\hat{i} + 3\hat{j} + \hat{k}) \cdot (\hat{i}) = -3$$

87. (a) We know that the mean and variance of Binomial distribution are np and npq respectively.

$$\text{So, } np = 8 \text{ and } npq = 4$$

On dividing, we get

$$q = \frac{npq}{np} = \frac{4}{8} = \frac{1}{2}$$

$$\text{Since, } p+q=1 \Rightarrow p=1-\frac{1}{2}=\frac{1}{2}$$

$$\text{We know that, } P(X=r) = {}^nC_r p^r q^{n-r}$$

This gives,

$$P(X=1) = {}^{16}C_1 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^{16-1} = \frac{16}{2^{15} \cdot 2} = \frac{1}{2^{12}}$$

88. (b) The equation of the sphere is $x^2 + y^2 + z^2 - 10z = 0$.

So, its center is $(0, 0, 0)$.

Coordinates of one end point of a diameter of the sphere is given as $(-3, -4, 5)$.

Let coordinates of another end point of this diameter is (x_1, y_1, z_1) .

$$\therefore \frac{-3+x_1}{2} = 0 \Rightarrow x_1 = 3$$

$$\frac{-4+y_1}{2} = 0 \Rightarrow y_1 = 4$$

$$\frac{5+z_1}{2} = 5 \Rightarrow z_1 = 5$$

So, required coordinates are $(3, 4, 5)$.

89. (c) Given mean and variance of binomial distribution are 4 and 3 respectively.

$$\text{So, } np = 4, npq = 3.$$

Here p is the probability of success, q is the probability of failure, and n is the number of trials.

$$\Rightarrow \frac{npq}{np} = \frac{3}{4}$$

$$\Rightarrow q = \frac{3}{4}$$

$$\text{Also, } p = 1 - q = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\therefore n = 16$$

In a binomial distribution, the value of r for which $P(X=r)$ is maximum is the mode of binomial distribution. Hence,

$$\begin{aligned} (n+1)p - 1 &\leq r \leq (n+1)p \\ \Rightarrow \frac{17}{4} - 1 &\leq r \leq \frac{17}{4} \\ \Rightarrow \frac{13}{4} &\leq r \leq \frac{17}{4} \\ \Rightarrow 3.25 &\leq r \leq 4.25 \\ \Rightarrow r &= 4 \end{aligned}$$

90. (b) Total no. of letters = 26

No. of selected letters = 3

So, no. of ways of selecting 3 letters out of 26 letters is given by ${}^{26}C_3$.

Since the letter 'A' will not be included in our choice, so, no. of letters becomes 25.

Now, no. of ways of selecting 3 letters out of 25 letters is given by ${}^{25}C_3$

$$\text{So, required probability} = \frac{{}^{25}C_3}{{}^{26}C_3} = \frac{25!}{3!22!} \times \frac{3!23!}{26!} = \frac{23}{26}$$

91. (b) It is given that \vec{a} is perpendicular to both \vec{b} and \vec{c} .

$$\vec{a} \cdot \vec{b} = 0 \text{ and } \vec{a} \cdot \vec{c} = 0$$

and angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$.

$$\therefore \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \frac{\pi}{3} = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Now,

$$\begin{aligned} |\vec{a} + \vec{b} + \vec{c}|^2 &= |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{c}) \\ &= 1 + 1 + 1 + 2 \left(0 + \frac{1}{2} + 0\right) \\ &= 1 + 1 + 1 + 1 \\ &= 4 \\ \Rightarrow |\vec{a} + \vec{b} + \vec{c}| &= 2 \end{aligned}$$

92. (d) The equation of family of circles having centres at the origin is

$$x^2 + y^2 = r^2$$

Where r is the radius

Differentiate both sides w.r.t. x , we get

$$2x + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow xdx + ydy = 0$$

This is the required differential equation.

93. (a) Let n denote the number of workers and x , the pay.

$$n_1 = 30, n_2 = 20, x_1 = 500, x_2 = 600$$

$$\text{Combined average} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$$

$$= \frac{30 \times 500 + 20 \times 600}{30 + 20}$$

$$= \frac{15000 + 12000}{50}$$

$$= \frac{27000}{50}$$

$$= 540$$

Combined average pay = ` 540

$$94. (c) \text{ Given } \begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0.$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$

$$\Rightarrow \begin{vmatrix} 1+a & -a & -a \\ 1 & b & 0 \\ 1 & 0 & c \end{vmatrix} = 0$$

Expanding along Row 3,

$$1(ab) + c(b + ab + a) = 0$$

$$\Rightarrow ab + bc + ca + abc = 0$$

$$\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -1$$

95. (a) Let $\vec{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$

$$\text{Now, } \vec{\alpha} \cdot \hat{i} = (\hat{a}\hat{i} + \hat{b}\hat{j} + \hat{c}\hat{k}) \cdot \hat{i} = a$$

Similarly,

$$\vec{\alpha} \cdot \hat{j} = (\hat{a}\hat{i} + \hat{b}\hat{j} + \hat{c}\hat{k}) \cdot \hat{j} = b$$

$$\vec{\alpha} \cdot \hat{k} = (\hat{a}\hat{i} + \hat{b}\hat{j} + \hat{c}\hat{k}) \cdot \hat{k} = c$$

$$\text{So, } (\vec{\alpha} \cdot \hat{i})\hat{i} + (\vec{\alpha} \cdot \hat{j})\hat{j} + (\vec{\alpha} \cdot \hat{k})\hat{k}$$

$$= a\hat{i} + b\hat{j} + c\hat{k}$$

$$= \vec{\alpha}$$

96. (c) For $\left\langle \frac{1}{\sqrt{2}}, \frac{1}{2}, k \right\rangle$ to be direction cosines,

$$\left(\frac{1}{\sqrt{2}} \right)^2 + \left(\frac{1}{2} \right)^2 + k^2 = 1$$

$$\Rightarrow \frac{1}{2} + \frac{1}{4} + k^2 = 1$$

$$\Rightarrow \frac{3}{4} + k^2 = 1$$

$$\Rightarrow k^2 = \frac{1}{4}$$

$$\Rightarrow k = \pm \frac{1}{2}$$

97. (a) Given table can be rewritten as

x	y	x^2	y^2	xy
5	2	25	4	10
7	4	49	16	28
8	3	64	9	24
8	3	64	9	24
4	2	16	4	8
6	4	36	16	24
$\sum x = 30$	$\sum y = 15$	$\sum x^2 = 190$	$\sum y^2 = 49$	$\sum xy = 94$

$$\bar{x} = \frac{30}{5} = 6 \quad \text{and} \quad \bar{y} = \frac{15}{5} = 3$$

$$\begin{aligned} \therefore b_{yx} &= \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2} \\ &= \frac{5 \times 94 - 30 \times 15}{5 \times 190 - (30)^2} = \frac{2}{5} = 0.4 \end{aligned}$$

Hence, line of regression is

$$y - 3 = 0.4(x - 6) \Rightarrow y = 0.4x + 0.6$$

98. (a) Let the line segment joining the points

$(2, 4, 5)$ and $(3, 5, -4)$ is internally divided by the xy -plane in the ratio $k:1$.

For xy plane, $z = 0$.

$$\Rightarrow 0 = \frac{-k \times 4 + 5}{k + 1}$$

$$\Rightarrow 4k = 5$$

$$\Rightarrow k = \frac{5}{4}$$

So, the ratio is $5:4$.

99. (b) Since the rate of growth of bacteria is proportional to the number of bacteria present at that time,

$$\Rightarrow \frac{dx}{dt} \propto x \Rightarrow \frac{dx}{dt} = x$$

$(\because$ proportional constant $= 1)$

$$\Rightarrow \int \frac{1}{x} dx = \int dt$$

$$\Rightarrow \log x = t + \log c$$

$$\Rightarrow \log x - \log c = t$$

$$\Rightarrow \log \frac{x}{c} = t$$

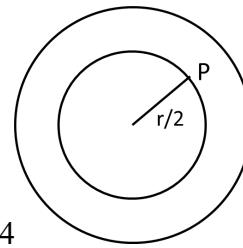
$$\Rightarrow \frac{x}{c} = e^t$$

$$\Rightarrow x = ce^t$$

100. (a) Let radius of the circle be r .

Total possible outcomes = Area of circle = πr^2

Observe the figure, we have to find the probability of point, P in the ring which will be closer to circumference.



4

Area of ring = Area of circle - Area of inner circle

$$= \pi r^2 - \pi \left(\frac{r}{2}\right)^2 = \pi r^2 - \frac{\pi r^2}{4} = \frac{3\pi r^2}{4}$$

$$\text{So, favourable outcome} = \frac{3\pi r^2}{4}$$

$$\text{Required probability} = \frac{\frac{3\pi r^2}{4}}{\pi r^2} = \frac{3}{4}$$

101. (b) Given differential equation is:

$$\left(\frac{d^2y}{dx^2} \right)^{5/6} = \left(\frac{dy}{dx} \right)^{1/3}$$

Raising both the sides to power of 6, to make it a polynomial of derivatives.

$$\Rightarrow \left(\frac{d^2y}{dx^2} \right)^5 = \left(\frac{dy}{dx} \right)^{6/3}$$

$$\Rightarrow \left(\frac{d^2y}{dx^2} \right)^5 = \left(\frac{dy}{dx} \right)^2$$

Highest derivative has a power of 5. So, the order and degree of given differential equation are 2 and 5 respectively.

102. (a) Since, $\sin^3 \theta + \cos^3 \theta = 0$

$$\begin{aligned}
 &\Rightarrow (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta) = 0 \\
 &\Rightarrow (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) = 0 \\
 &\Rightarrow (\sin \theta + \cos \theta)\left(1 - \frac{\sin 2\theta}{2}\right) = 0 \\
 &\Rightarrow \sin \theta + \cos \theta = 0 \text{ or } \sin 2\theta = 2 \\
 &\quad (\text{discarded since } \sin 2\theta = 2 \text{ not possible})
 \end{aligned}$$

$$\Rightarrow \sin \theta + \cos \theta = 0 \Rightarrow \sin \theta = -\cos \theta$$

$$\Rightarrow \tan \theta = -1 \Rightarrow \theta = -\frac{\pi}{4}$$

103. (d) Given differential equation is

$$-\operatorname{cosec}^2(x+y)dy = dx$$

$$\Rightarrow \frac{dy}{dx} = -\sin^2(x+y)$$

$$\text{Put } x+y = t \Rightarrow 1 + \frac{dy}{dx} = \frac{dt}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{dt}{dx} - 1$$

$$\Rightarrow \frac{dt}{dx} - 1 = -\sin^2 t$$

$$\Rightarrow \frac{dt}{dx} = 1 - \sin^2 t$$

$$\Rightarrow \frac{dt}{dx} = \cos^2 t$$

$$\Rightarrow \frac{dt}{dx} = \frac{1}{\sec^2 t}$$

Separate the variables and then integrate,

$$\int \sec^2 t dt = \int dx \Rightarrow \tan t = x - c$$

104. (c) Probability that machine stops working

$$= P(A \cup B \cup C)$$

$$\begin{aligned}
 &\Rightarrow P(A \cup B \cup C) = P(A) + P(A) + P(C) - P(A \cap B) \\
 &\quad - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)
 \end{aligned}$$

$$\begin{aligned}
 &\Rightarrow P(A \cup B \cup C) = P(A) + P(A) + P(C) - P(A)P(B) \\
 &\quad - P(B)P(C) - P(A)P(C) + P(A)P(B)P(C)
 \end{aligned}$$

[\$\because A, B, C\$ are independent events]

$$\begin{aligned}
 &\Rightarrow P(A \cup B \cup C) = 0.02 + 0.1 + 0.05 - (0.02 \times 0.1) \\
 &\quad - (0.02 \times 0.05) - (0.1 \times 0.05) + (0.2 \times 0.05 \times 0.1) \\
 &\Rightarrow P(A \cup B \cup C) = 0.16
 \end{aligned}$$

So, the probability that the machine will not stop working is given by

$$= 1 - P(A \cup B \cup C) = 1 - 0.16 = 0.84$$

105. (a) Force, $\vec{F} = m\hat{i} - 3\hat{j} + \hat{k}$

Due to the force, point moves from $(20, 3m, 0)$ to $(0, 0, 7)$.

So, the displacement vector \vec{AB} is given by,

$$\vec{AB} = -20\hat{i} - 3\hat{j} + 7\hat{k}$$

$$\text{Work done} = \vec{F} \cdot \vec{AB}$$

$$\begin{aligned}
 &= (m\hat{i} - 3\hat{j} + \hat{k}) \cdot (-20\hat{i} - 3\hat{j} + 7\hat{k}) \\
 &= -20m + 9m + 7 \\
 &= -11m + 7
 \end{aligned}$$

But work done is given to be -48 unit. So, we have

$$-11m + 7 = -48$$

$$\Rightarrow -11m = -55$$

$$\Rightarrow m = 5$$

106. (c) Case I

When unit digit can be 1, 3, 5 or 7 & digit at thousand's place can be 1, 2, 3, 4, 5, 6, 7 or 8.

No. of ways digits can be filled are:

7	8	7	4
---	---	---	---

Total no's = $7 \times 8 \times 7 \times 4 = 1568$

Case II

When unit digit can be 9 & digit at thousand's place can be 1, 2, 3, 4, 5, 6, 7 or 8.

No. of ways digits can be filled are:

8	8	7	1
---	---	---	---

Total no's = $8 \times 8 \times 7 \times 1 = 448$

Case III

When unit digit can be 1, 3, 5 or 7 & digit at thousand's place can be 9.

No. of ways digits can be filled are:

1	8	7	4
---	---	---	---

Total no's = $1 \times 8 \times 7 \times 4 = 224$

∴ Number of odd digits between 1000 and 9999 with no digit repeated = $1568 + 448 + 224 = 2240$

107. (c) We have $\tan\left(7\frac{1}{2}\right)^\circ = \frac{\sin\left(7\frac{1}{2}\right)^\circ}{\cos\left(7\frac{1}{2}\right)^\circ}$

Multiply and divide by $2\sin\left(7\frac{1}{2}\right)^\circ$, we get

$$\frac{2\sin^2\left(7\frac{1}{2}\right)^\circ}{2\sin\left(7\frac{1}{2}\right)^\circ \cos\left(7\frac{1}{2}\right)^\circ} = \frac{2\sin^2\left(\frac{15}{2}\right)^\circ}{2\sin\left(\frac{15}{2}\right)^\circ \cos\left(\frac{15}{2}\right)^\circ}$$

$$= \frac{1 - \cos\left(2 \times \frac{15}{2}\right)^\circ}{\sin\left(2 \times \frac{15}{2}\right)^\circ}$$

(∴ $\cos 2\theta = 1 - 2\sin^2 \theta$ and $\sin 2\theta = 2\sin \theta \cos \theta$)

$$= \frac{1 - \cos 15^\circ}{\sin 15^\circ} = \frac{1 - \left(\frac{\sqrt{3} + 1}{2\sqrt{2}}\right)}{\frac{\sqrt{3} - 1}{2\sqrt{2}}} = \sqrt{2}(\sqrt{3} + 1) - (2 + \sqrt{3})$$

$$= \sqrt{6} + \sqrt{2} - 2 - \sqrt{3} = \sqrt{6} - \sqrt{3} + \sqrt{2} - 2$$

108. (d) Any 5-digits number formed by the digits 1, 2, 3, 4 and 5 (without repetition) will be always divisible by number 3, because sum of digits of any number, thus formed $1 + 2 + 3 + 4 + 5 = 15$, is divisible by 3.

Hence, prime number of 5 digits cannot be obtained by using the digits 1, 2, 3, 4, 5

109. (b) Consider $\frac{\sin \theta + \cos \theta - \tan \theta}{\sec \theta + \operatorname{cosec} \theta - \cot \theta}$

Now, put value of $\theta = \frac{3\pi}{4}$, we get

$$= \frac{\sin \frac{3\pi}{4} + \cos \frac{3\pi}{4} - \tan \frac{3\pi}{4}}{\sec \frac{3\pi}{4} + \operatorname{cosec} \frac{3\pi}{4} - \cot \frac{3\pi}{4}}$$

$$= \frac{\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + \tan \frac{\pi}{4}}{-\frac{1}{\cos \frac{\pi}{4}} + \frac{1}{\sin \frac{\pi}{4}} + \frac{1}{\tan \frac{\pi}{4}}} = \frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1}{-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + 1} = 1$$

110. (c) Given matrix is $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$

$$A^2 = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 4+4 & 4+4 \\ 4+4 & 4+4 \end{bmatrix} = \begin{bmatrix} 2^3 & 2^3 \\ 2^3 & 2^3 \end{bmatrix}$$

$$A^3 = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 16+16 & 16+16 \\ 16+16 & 16+16 \end{bmatrix} = \begin{bmatrix} 2^5 & 2^5 \\ 2^5 & 2^5 \end{bmatrix}$$

Going this way, we get

$$A^4 = \begin{bmatrix} 2^7 & 2^7 \\ 2^7 & 2^7 \end{bmatrix} \Rightarrow A^n = \begin{bmatrix} 2^{2n-1} & 2^{2n-1} \\ 2^{2n-1} & 2^{2n-1} \end{bmatrix}$$

111. (c) The given word is 'NATION'.

Total number of words that can be formed from given word 'NATION' = $\frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 360$

Now numbers of words that can be formed from given word 'NATION', so that all vowels never come together.

$$= 360 - \left[4! \times \frac{3!}{2!} \right] = 360 - [24 \times 3]$$

$$= 360 - 72 = 288$$

112. (d) Vectors are $2\hat{i} + m\hat{j} - 3n\hat{k}$ and $5\hat{i} + 3m\hat{j} + n\hat{k}$.

The magnitudes are given as $\sqrt{14}$ and $\sqrt{35}$ respectively. This gives,

$$\begin{aligned}
 & \left| 2\hat{i} + m\hat{j} - 3n\hat{k} \right| = \sqrt{14} \\
 \Rightarrow & \sqrt{4 + m^2 + 9n^2} = \sqrt{14} \\
 \Rightarrow & 4 + m^2 + 9n^2 = 14 \\
 \Rightarrow & m^2 + 9n^2 = 10 \quad \dots(\text{i})
 \end{aligned}$$

Also,

$$\begin{aligned}
 & \left| 5\hat{i} + 3m\hat{j} + n\hat{k} \right| = \sqrt{35} \\
 \Rightarrow & \sqrt{25 + 9m^2 + n^2} = \sqrt{35} \\
 \Rightarrow & 25 + 9m^2 + n^2 = 35 \\
 \Rightarrow & 9m^2 + n^2 = 10 \quad \dots(\text{ii})
 \end{aligned}$$

From (i) and (ii),

$$\begin{aligned}
 m^2 + 9n^2 &= 9m^2 + n^2 \\
 \Rightarrow 8n^2 &= 8m^2 \\
 \Rightarrow n^2 &= m^2 \\
 \Rightarrow n &= \pm m
 \end{aligned}$$

So, n takes 2 values and m takes 2 values.

113. (b) Given two lines are $8x - 10y = 66$ and $40x - 18y = 214$.

This gives,

$$8x - 10y = 66 \Rightarrow 10y = 8x - 66$$

$$\Rightarrow b_{yx} = \frac{8}{10} = \frac{4}{5}$$

$$40x - 18y = 214 \Rightarrow 40x = 18x + 214$$

$$\Rightarrow b_{xy} = \frac{18}{40} = \frac{9}{20}$$

$$\text{Thus, } r = \pm \sqrt{\frac{4}{5} \times \frac{9}{20}} = \frac{3}{5}$$

$$\text{Also, } \sigma_x = \sqrt{9} = 3$$

$$\therefore \sigma_y = \frac{b_{yx} \times \sigma_x}{r} = \frac{\frac{4}{5} \times 3}{\frac{3}{5}} = \frac{12}{5} = \frac{12}{5} \times \frac{5}{3} = 4$$

114. (c) Given center of sphere is $(6, -1, 2)$ and equation of plane is $2x - y + 2z - 2 = 0$.

Since, sphere touches the plane, therefore perpendicular distance from center to the plane is radius of the sphere.

$$\therefore \text{Radius} = \frac{2(6) - 1(-1) + 2(2) - 2}{\sqrt{4+1+4}} = \frac{15}{3} = 5$$

So, required equation of sphere is

$$\begin{aligned}
 (x-6)^2 + (y+1)^2 + (z-2)^2 &= 5^2 \\
 \Rightarrow x^2 + y^2 + z^2 - 12x + 2y - 4z + 16 &= 0
 \end{aligned}$$

115. (c) Here $\vec{F} = 3\hat{i} + 2\hat{j} - \hat{k}$

and

$$\begin{aligned}
 \vec{r}_1 - \vec{r}_2 &= (\hat{i} - \hat{j} + \hat{k}) - (2\hat{i} - 3\hat{j} - \hat{k}) \\
 &= -\hat{i} + 2\hat{j} + 2\hat{k}
 \end{aligned}$$

$$\text{Moment of couple} = (\vec{r}_1 - \vec{r}_2) \times \vec{F}$$

$$= (-\hat{i} + 2\hat{j} + 2\hat{k}) \times (3\hat{i} + 2\hat{j} - \hat{k})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 2 \\ 3 & 2 & -1 \end{vmatrix}$$

$$= \hat{i}(-2-4) - \hat{j}(1-6) + \hat{k}(-2-6)$$

$$= -6\hat{i} + 5\hat{j} - 8\hat{k}$$

Magnitude of moment is

$$\begin{aligned}
 \left| -6\hat{i} + 5\hat{j} - 8\hat{k} \right| &= \sqrt{26 + 25 + 64} \\
 &= 5\sqrt{5}
 \end{aligned}$$

116. (d) To find the consistent demand, we will calculate coefficient of variance.

We know that coefficient of variance = $\frac{\sqrt{SD}}{\text{mean}}$

Also, $SD = \sqrt{\text{variance}}$

$$\text{Coefficient of variance of A} = \frac{\sqrt{12}}{60} = \frac{3.46}{60} = 0.057$$

$$\text{Coefficient of variance of B} = \frac{\sqrt{25}}{90} = \frac{5}{90} = 0.055$$

$$\text{Coefficient of variance of C} = \frac{\sqrt{36}}{80} = \frac{6}{80} = 0.075$$

$$\text{Coefficient of variance of } D = \frac{\sqrt{16}}{120} = \frac{4}{120} = 0.033$$

We see that minimum coefficient of variance is of D, so product D is consistent.

117. (d) Here $A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} l \\ m \\ n \end{bmatrix}$

and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

$$\therefore |A| = -2(4-1) - 1(-2-1) + (1+2) \\ = -6 + 3 + 3 = 0$$

Now, $\text{Adj } A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$

$$\therefore (\text{Adj } A)B = 0$$

So, the given system of equations has an infinitely many solutions.

118. (a) Given $x+z=0$, $y=0$ and $20x=15y=12z$.

$$\Rightarrow \frac{x}{1} = \frac{y}{0} = \frac{z}{-1} \text{ and } \frac{x}{3} = \frac{y}{4} = \frac{z}{5}$$

Let θ be the angle between two lines.

$$\therefore \cos \theta = \frac{|(1)(3) + (0)(4) + (-1)(5)|}{\sqrt{1+0+1} \sqrt{9+16+25}} \\ = \frac{|3+0-5|}{\sqrt{2} \sqrt{50}} \\ = \frac{2}{\sqrt{2} 5\sqrt{2}} = \frac{1}{5}$$

$$\therefore \theta = \cos^{-1}\left(\frac{1}{5}\right)$$

119. (b) Let there be x number of boys and y number of girls.

$$\text{Total students} = x + y$$

$$\text{Total weight of the students} = (x+y)60$$

$$\text{Total weight of boys} = x \times 70$$

$$\text{Total weight of girls} = y \times 55$$

$$\text{Hence, } (x+y)60 = 70x + 55y$$

$$\Rightarrow 60x + 60y = 70x + 55y$$

$$\Rightarrow 5y = 10x$$

$$\Rightarrow \frac{x}{y} = \frac{5}{10}$$

$$\Rightarrow x:y = 1:2$$

120. (a) Since $l^2 + m^2 + n^2 = 1$

$\left(\because \text{a line makes the same angle } \alpha \text{ with } x \text{ and } y \text{ axis} \right)$
 $\text{and } \theta \text{ with } z \text{ axis}$

$$\text{Also, } \sin^2 \theta = 1 - \cos^2 \theta$$

$$\Rightarrow \sin^2 \theta = 2 \sin^2 \alpha$$

$$\Rightarrow 1 - \cos^2 \theta = 2(1 - \cos^2 \alpha)$$

$$\left(\because \sin^2 \alpha + \cos^2 \alpha = 1 \right)$$

$$\Rightarrow \cos^2 \theta = 2 \cos^2 \alpha - 1 \dots (\text{ii})$$

From (i) and (ii),

$$2 \cos^2 \alpha + 2 \cos^2 \alpha - 1 = 1$$

$$\Rightarrow 4 \cos^2 \alpha = 1$$

$$\Rightarrow \cos^2 \alpha = \frac{1}{4}$$

$$\Rightarrow \cos \alpha = \pm \frac{1}{2}$$

$$\Rightarrow \alpha = \frac{\pi}{4}, \frac{3\pi}{4}$$