

HINTS & SOLUTION

1. (a) Since the first term = p and common difference = q

$$\text{Sum of first 10 terms} = \frac{10}{2} [2p + (10-1)q] \text{ and}$$

$$\text{Sum of first 5 terms} = \frac{5}{2} [2p + (5-1)q]$$

According to the question,

$$\frac{10}{2} [2p + 9q] = 4 \times \frac{5}{2} [2p + 4q]$$

$$\Rightarrow 2p + 9p = 4p + 8q$$

$$\Rightarrow 2p = q$$

$$\Rightarrow p:q = 1:2$$

Hence, option (a) is correct.

2. (b) Let $\frac{k}{k+1}$ and $\frac{k+1}{k+2}$ are the roots of the equation

$$4\beta^2 + \lambda\beta - 2 = 0, \text{ then}$$

$$\text{Sum of roots} = \frac{k}{k+1} + \frac{k+1}{k+2} = -\frac{\lambda}{4} \quad \dots \text{(i)}$$

$$\text{Product of roots} = \frac{k}{k+1} \times \frac{k+1}{k+2} = -\frac{2}{4}$$

$$\Rightarrow \frac{k}{k+2} = -\frac{1}{2} \Rightarrow 2k = -k - 2 \Rightarrow k = -\frac{2}{3}$$

Putting the value of k in (i), we get

$$\frac{-\frac{2}{3}}{-\frac{2}{3}+1} + \frac{-\frac{2}{3}+1}{-\frac{2}{3}+2} = -\frac{\lambda}{4}$$

$$\Rightarrow \frac{-\frac{2}{3}}{\frac{1}{3}} + \frac{\frac{1}{3}}{\frac{1}{3}} = -\frac{\lambda}{4} \Rightarrow -2 + \frac{1}{4} = -\frac{\lambda}{4}$$

$$\Rightarrow \lambda = 7$$

Hence, option (b) is correct.

3. (c) We have $U = \{x \mid x^5 - 6x^4 + 11x^3 - 6x^2 = 0\}$

Solving for the values of x , we get

$$x = \{0, 1, 2, 3\}$$

$$\text{For } A = \{x \mid x^2 - 5x + 6 = 0\}$$

Solving for the values of x , we get

$$x = \{2, 3\}$$

$$\text{For } B = \{x \mid x^2 - 3x + 2 = 0\}$$

Solving for the values of x , we get

$$x = \{2, 1\}$$

This gives $A \cap B = 2$

$$\therefore (A \cap B)' = U - (A \cap B)$$

$$= \{0, 1, 2, 3\} - \{2\}$$

$$= \{0, 1, 3\}$$

Hence, option (c) is correct.

4. (d) Given that $S_m = n$ and $S_n = m$

Then the sum of the $(m+n)$ terms is given by the direct formula $S_{m+n} = -(m+n)$

Hence, option (d) is correct.

5. (c) Let the angles are α and β , then $\alpha - \beta = 1^\circ$

$$\Rightarrow \alpha - \beta = \frac{\pi}{180^\circ} \text{ is circular measure} \quad \dots \text{(i)}$$

$$\text{As given } \alpha + \beta = 1 \quad \dots \text{(ii)}$$

On solving equations (i) and (ii), we get

$$\alpha = \frac{1}{2} \left[1 + \frac{\pi}{180} \right] \text{ and } \beta = \frac{1}{2} \left[1 - \frac{\pi}{180} \right]$$

β is the smaller angle.

$$\text{Hence, smaller angle} = \frac{1}{2} \left[1 - \frac{\pi}{180} \right]$$

Hence, option (c) is correct.

6. (d) In the expansion of $\left(\frac{x\sqrt{y}}{3} - \frac{3}{y\sqrt{x}}\right)^{12}$, then middle

term is $\frac{12}{2} + 1 = 7^{\text{th}}$ term

$$T_{r+1} = {}^{12}C_r \left[\frac{x\sqrt{y}}{3} \right]^{12-r} \cdot \left(-\frac{3}{y\sqrt{x}} \right)^r$$

$$\therefore T_7 = T_{6+1} = {}^{12}C_6 \left(\frac{x\sqrt{y}}{3} \right)^6 \left(-\frac{3}{y\sqrt{x}} \right)^6$$

$$= {}^{12}C_6 \frac{x^6 y^3}{y^6 x^3} = {}^{12}C_6 x^3 y^{-3} = C(12, 6) x^3 y^{-3}$$

Hence, option (d) is correct.

7. (c) Let $A = (1, 0)$, $B = (0, -6)$ and $C = (3, 4)$

$$\text{Equation of } AB \text{ is } L: \frac{y-0}{-6-0} = \frac{x-1}{0-1}$$

$$\Rightarrow \frac{y}{-6} = \frac{x-1}{-1} \Rightarrow y = 6x - 6 \Rightarrow 6x - y - 6 = 0$$

Equation of circle C with AB as diameter is

$$(x-1)(x-0) + (y-0)(y+6) = 0$$

$$\Rightarrow x^2 - x + y^2 + 6y = 0$$

The system of circle passing through the intersection of the circle C and line L is given by $C + kL = 0$

$$\Rightarrow x^2 - x + y^2 + 6y + k(6x - y - 6) = 0$$

This circle is passing through $(3, 4)$

$$\therefore (3)^2 - 3 + (4)^2 + 6(4) + k(6(3) - 4 - 6) = 0$$

$$\Rightarrow 9 - 3 + 16 + 24 + k(18 - 10) = 0$$

$$\Rightarrow 46 + 8k = 0 \Rightarrow 8k = -46 \Rightarrow k = \frac{-23}{4}$$

∴ Equation of circle is

$$x^2 - x + y^2 + 6y + \left(\frac{-23}{4} \right) (6x - y - 6) = 0$$

$$\Rightarrow 4x^2 - 4x + 4y^2 + 24y - 138x + 23y + 138 = 0$$

$$\Rightarrow 4x^2 + 4y^2 - 142x + 47y + 138 = 0$$

Hence, option (c) is correct.

8. (a) Consider, $\tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z) - \cot(\cot^{-1} x + \cot^{-1} y + \cot^{-1} z)$

$$= \tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z) - \cot\left(\frac{\pi}{2} - \tan^{-1} x + \frac{\pi}{2} - \tan^{-1} y + \frac{\pi}{2} - \tan^{-1} z\right)$$

$$\left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$

$$= \tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z) - \cot\left\{ \frac{3\pi}{2} - (\tan^{-1} x + \tan^{-1} y + \tan^{-1} z) \right\}$$

$$= \tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z) - \tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z)$$

$$= 0$$

Hence, option (a) is correct.

9. (c) Let α and β be roots of $x^2 - (p-2)x - (p+1) = 0$

$$\text{Then, } \alpha + \beta = (p-2) \text{ and } \alpha\beta = -(p+1)$$

$$\text{Since, } \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 5$$

$$\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 5$$

$$\Rightarrow (p-2)^2 + 2(p+1) = 5$$

$$\Rightarrow p^2 - 4p + 4 + 2p + 2 = 5$$

$$\Rightarrow p^2 - 2p + 1 = 0$$

$$\Rightarrow (p-1)^2 = 0$$

$$\Rightarrow p = 1$$

Hence, option (c) is correct.

10. (a) R is a relation defined on the set Z of integers as follows:

$$mRn \Leftrightarrow m+n \text{ is odd}$$

(1) Then, $mRn = 2m$ and $mRn = 2n$ are not odd multiples of 2 are not good. Thus, it is not reflexive.

(2) If m and n are numbers such that $mRn \Leftrightarrow m+n$ is odd.

Thus, $nRm \Leftrightarrow n+m$ is odd.

∴ This relation is symmetric.

(3) $mRn = m+n$, if there is third number p and $nRp = n+p$ is odd. (for ex: $2+3=5$ is odd, $3+4=7$ is odd, but $2+4=6$ is not odd). Then $mRp = m+p$ may not be odd. So, this relation is not transitive.

Hence, option (a) is correct.

11. (a) Given that a, b, c are in GP.

Let r be common ratio of GP.

$$\text{So, } a = a, b = ar \text{ and } c = ar^2 \quad \dots \text{(i)}$$

Also, given that $a, 2b, 3c$ are in AP.

$$\Rightarrow 2b = \frac{a+3c}{2}$$

$$\Rightarrow 4b = a + 3c$$

From equation (i), we get

$$\Rightarrow 4ar = a + 3ar^2$$

$$\Rightarrow 3ar^2 - 4ar + a = 0$$

$$\Rightarrow 3r^2 - 4r + 1 = 0$$

$$\Rightarrow (r-1)(3r-1) = 0$$

$$\Rightarrow r = 1 \text{ or } r = \frac{1}{3}$$

Hence, option (a) is correct.

12. (a) Given that $\sqrt{3} \cos ec 20^\circ - \sec 20^\circ$

$$\begin{aligned} &= \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ} = \frac{\sqrt{3} \cos 20^\circ - \sin 20^\circ}{\sin 20^\circ \cos 20^\circ} \\ &= \frac{4 \cdot \frac{1}{2} (\sqrt{3} \cos 20^\circ - \sin 20^\circ)}{2 \sin 20^\circ \cos 20^\circ} \\ &= \left(\frac{\sqrt{3}}{2} \cos 20^\circ - \frac{1}{2} \sin 20^\circ \right) \left(\frac{4}{2 \sin 20^\circ \cos 20^\circ} \right) \\ &= (\sin 60^\circ \cos 20^\circ - \cos 60^\circ \sin 20^\circ) \left(\frac{4}{\sin 40^\circ} \right) \\ &= \sin(60^\circ - 20^\circ) \left(\frac{4}{\sin 40^\circ} \right) \\ &= \sin(40^\circ) \left(\frac{4}{\sin 40^\circ} \right) \\ &= 4 \end{aligned}$$

Hence, option (a) is correct.

13. (c) Given that $P(5, r) = P(6, r-1)$

$$\Rightarrow {}^5P_r = {}^6P_{r-1}$$

$$\Rightarrow \frac{5!}{(5-r)!} = \frac{6!}{(6-r+1)!}$$

$$\Rightarrow \frac{5!}{(5-r)!} = \frac{6 \times 5!}{(7-r)(6-r)(5-r)!}$$

$$\Rightarrow (7-r)(6-r) = 6$$

$$\Rightarrow 42 - 13r + r^2 = 6$$

$$\Rightarrow r^2 - 13r + 36 = 0$$

$$\Rightarrow (r-9)(r-4) = 0$$

$$\Rightarrow r = 4 \quad (\because r \neq 9)$$

Hence, option (c) is correct.

14. (d) The given integral is $\int \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$

Breaking the expression under integral into partial fraction

$$\frac{1}{(x^2 + a^2)(x^2 + b^2)} = \left(\frac{1}{(x^2 + a^2)} - \frac{1}{(x^2 + b^2)} \right) \times \frac{1}{b^2 - a^2}$$

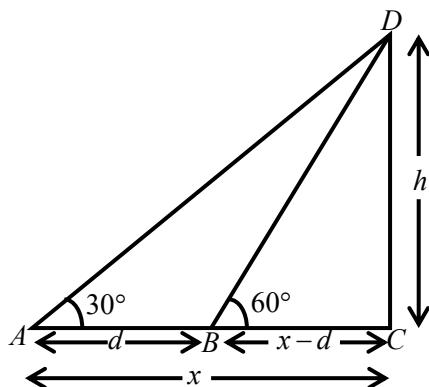
The given integral is

$$\begin{aligned} &\frac{1}{b^2 - a^2} \int \left(\frac{1}{(x^2 + a^2)} - \frac{1}{(x^2 + b^2)} \right) dx \\ &= \frac{1}{b^2 - a^2} \left[\int \frac{1}{(x^2 + a^2)} dx - \int \frac{1}{(x^2 + b^2)} dx \right] \\ &= \frac{1}{b^2 - a^2} \left[\frac{\tan^{-1} \left(\frac{x}{a} \right)}{a} - \frac{\tan^{-1} \left(\frac{x}{b} \right)}{b} \right] \end{aligned}$$

Hence, option (d) is correct.

15. (b) Let DC be the pillar of height h and A be the point at distance x from the pillar such that $\angle CAD = 30^\circ$.

On walking a distance d towards pillar (point B) $\angle CBD = 60^\circ$.



So, in $\triangle ABC$

$$\begin{aligned}\tan 60^\circ &= \frac{CD}{BC} \\ \Rightarrow \sqrt{3} &= \frac{h}{x-d} \\ \Rightarrow h &= \sqrt{3}(x-d) \quad \dots \text{(i)}\end{aligned}$$

and in $\triangle ACD$,

$$\begin{aligned}\tan 30^\circ &= \frac{CD}{AC} \\ \Rightarrow \frac{1}{\sqrt{3}} &= \frac{h}{x} \\ \Rightarrow x &= h\sqrt{3} \\ \Rightarrow x &= 3(x-d) \quad \{ \text{using (i)} \} \\ \Rightarrow x &= 3x-3d \\ \Rightarrow 2x &= 3d \\ \Rightarrow x &= \frac{3d}{2}\end{aligned}$$

Hence, option (b) is correct.

16. (c) We have $f(x) = \begin{vmatrix} 1+\sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1+\cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1+4\sin 2x \end{vmatrix}$

Applying $C_1 \rightarrow C_1 + C_2$

$$f(x) = \begin{vmatrix} 2 & \cos^2 x & 4\sin 2x \\ 2 & 1+\cos^2 x & 4\sin 2x \\ 1 & \cos^2 x & 1+4\sin 2x \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$

$$f(x) = \begin{vmatrix} 2 & \cos^2 x & 4\sin 2x \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$

$$f(x) = 2 + 4\sin 2x$$

$\therefore -1 \leq \sin 2x \leq 1$, maximum value of $\sin 2x = 1$

Thus, maximum value of $f(x) = 2 + 4 = 6$

Hence, option (c) is correct.

17. (b) Given that $u = \sin^{-1}(x-y)$ and $x = 3t, y = 4t^3$

$$\text{So, } u = \sin^{-1}(3t - 4t^3)$$

$$\text{Let } t = \sin \theta \Rightarrow \theta = \sin^{-1} t$$

$$\text{So, } u = \sin^{-1}(3\sin \theta - 4\sin^3 \theta) = \sin^{-1}(\sin 3\theta) = 3\theta$$

$$\text{Hence, } u = 3\sin^{-1} t$$

$$\therefore \frac{du}{dt} = 3 \cdot \frac{1}{\sqrt{1-t^2}} = 3(1-t^2)^{-\frac{1}{2}}$$

Hence, option (b) is correct.

18. (d) Sum and product of roots of $Ax^2 - 4x + 1 = 0$ will be

$$\alpha + \gamma = \frac{4}{A} \text{ and } \alpha\gamma = \frac{1}{A} \text{ respectively.}$$

Sum and product of roots of $Bx^2 - 6x + 1 = 0$ will be

$$\beta + \delta = \frac{6}{B} \text{ and } \beta\delta = \frac{1}{B} \text{ respectively.}$$

Then, $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ and $\frac{1}{\delta}$ will be in AP.

$$\Rightarrow \frac{1}{\beta} - \frac{1}{\alpha} = \frac{1}{\delta} - \frac{1}{\gamma} \Rightarrow \frac{1}{\beta} - \frac{1}{\delta} = \frac{1}{\alpha} - \frac{1}{\gamma}$$

$$\Rightarrow \frac{\delta - \beta}{\beta\delta} = \frac{\gamma - \alpha}{\alpha\gamma}$$

$$\Rightarrow \frac{\sqrt{(\delta + \beta)^2 - 4\beta\delta}}{\beta\delta} = \frac{\sqrt{(\gamma + \alpha)^2 - 4\alpha\gamma}}{\alpha\gamma}$$

$$\Rightarrow 36 - 4B = 16 - 4A$$

$$\Rightarrow 4A + 4B = 20$$

$$\Rightarrow A + B = 5$$

It is possible only, if $A = -3$ and $B = 8$

Hence, option (d) is correct.

19. (d) The given relation is $a R b \Leftrightarrow a+2b$ is an integral multiple of 3.

In this relation

$a R a \Leftrightarrow a+2a=3a$, an integral multiple of 3. So, it is reflexive.

$a R b \Leftrightarrow a+2b$ and

$b R a = b+2a+4b-4b=2(a+2b)-3b$ is also an integral multiple of 3.

So, it is symmetric.

Let there be another value c , $b R c = b+2c$ be an integral multiple of 3.

Then $a R c = a+2c$

So, $a R b + b R c = a+2b+b+2c = a+2c+3b$ is integral multiple of 3. Hence, $a+2c$ is also integral multiple of 3.

So, $a R b$ and $b R c \Rightarrow a R c$. So, it is transitive.

Therefore, relation is reflexive, symmetric as well as transitive.

Hence, R is an equivalence relation.

Hence, option (d) is correct.

20. (b) Given that $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$

$$= \tan 9^\circ - \tan 27^\circ - \tan(90^\circ - 27^\circ) + \tan(90^\circ - 9^\circ)$$

$$= \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 9^\circ$$

$$= (\tan 9^\circ + \cot 9^\circ) - (\tan 27^\circ + \cot 27^\circ)$$

$$= \frac{1}{\sin 9^\circ \cos 9^\circ} - \frac{1}{\sin 27^\circ \cos 27^\circ}$$

$$= \frac{2}{\sin 18^\circ} - \frac{2}{\sin 54^\circ}$$

$$= \frac{2}{\sin 18^\circ} - \frac{2}{\sin(90^\circ - 36^\circ)}$$

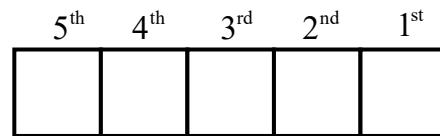
$$= \frac{2}{\sin 18^\circ} - \frac{2}{\cos 36^\circ}$$

$$= 2 \left[\frac{4}{\sqrt{5}-1} - \frac{4}{\sqrt{5}+1} \right] = 8 \times \frac{2}{4} = 4$$

Hence, option (b) is correct.

21. (b) We have to construct 5 digit numbers which are greater than 41000.

So, we have only 2 ways to choose 5th digit.



$[\because$ only 4 or 5 can come at 5th place]

Thus, for 4th place we have 4 ways to choose digits.

For 3rd place we have 3 ways.

For 2nd place we have 2 ways.

And for the unity place we have only 1 way.

\therefore Required number of ways $2 \times 4 \times 3 \times 2 \times 1 = 48$

Hence, option (b) is correct.

22. (b) The length of latus rectum of an ellipse is $\frac{2b^2}{a}$

where b is semi-minor axis and a is semi-major axis.

As given,

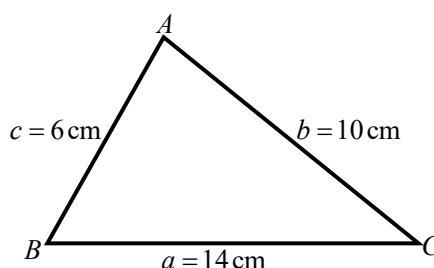
$$\frac{2b^2}{a} = b \Rightarrow 2b = a \Rightarrow \frac{b}{a} = \frac{1}{2}$$

$$\text{We know that eccentricity } e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$$

Hence, option (b) is correct.

23. (b) We know that the largest side has greatest angle opposite it.

$\therefore a = 14 \text{ cm}, b = 10 \text{ cm}$ and $c = 6 \text{ cm}$



$$\therefore \cos A = \frac{c^2 + b^2 - a^2}{2bc} = \frac{36 + 100 - 196}{2 \times 6 \times 10}$$

$$\cos A = -\frac{1}{2} = \cos 120^\circ$$

$$\Rightarrow \angle A = 120^\circ$$

Hence, option (b) is correct.

24. (c) Given that $x+y=t-\frac{1}{t}$ and $x^2+y^2=t^2+\frac{1}{t^2}$

$$\therefore (x+y)^2 = x^2 + y^2 + 2xy$$

$$\Rightarrow \left(t - \frac{1}{t}\right)^2 = \left(t^2 + \frac{1}{t^2}\right) + 2xy$$

$$\Rightarrow t^2 + \frac{1}{t^2} - 2 = t^2 + \frac{1}{t^2} + 2xy$$

$$\Rightarrow -2 = 2xy$$

$$\Rightarrow xy = -1$$

Also,

$$(x-y)^2 = (x+y)^2 - 4xy$$

$$\Rightarrow (x-y)^2 = \left(t - \frac{1}{t}\right)^2 - 4(-1)$$

$$\Rightarrow (x-y)^2 = t^2 + \frac{1}{t^2} - 2 + 4$$

$$\Rightarrow (x-y)^2 = \left(t + \frac{1}{t}\right)^2$$

$$\Rightarrow x-y = t + \frac{1}{t}$$

$$\Rightarrow x=t, y=-\frac{1}{t} \Rightarrow xy=-1$$

$$\therefore x \frac{dy}{dx} + y = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x} = \frac{1}{t^2} = \frac{1}{x^2}$$

Hence, option (c) is correct.

25. (a) Required area = $\int_{-2}^2 \left(1 - \frac{x^2}{4}\right) dx$

Since, $\left(1 - \frac{x^2}{4}\right)$ is an even function, therefore

$$\begin{aligned} \int_{-2}^2 \left(1 - \frac{x^2}{4}\right) dx &= 2 \int_0^2 \left(1 - \frac{x^2}{4}\right) dx \\ &= 2 \left[x - \frac{x^3}{12} \right]_0^2 = 2 \left[2 - \frac{2^3}{12} \right] \\ &= 2 \left(2 - \frac{2}{3} \right) = \frac{8}{3} \text{ sq unit} \end{aligned}$$

Hence, option (a) is correct.

26. (b) The equation is $|x^2 - x - 6| = x + 2$

For $x \geq 0$

$$\therefore x^2 - x - 6 = x + 2$$

$$\Rightarrow x^2 - 2x - 8 = 0$$

$$\Rightarrow (x-4)(x+2) = 0$$

$$\Rightarrow x = 4, -2$$

For $x < 0$

$$-x^2 + x + 6 = x + 2$$

$$\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$$

Thus, the number of real solutions are $-2, 2$ and 4 .

So, the numbers of real solutions of the equation $|x^2 - x - 6| = x + 2$ are 3 .

Hence, option (b) is correct.

27. (d) Let $A = \{(n, 2n) : n \in N\}$ and $B = \{(2n, 3n) : n \in N\}$

Listing few members of each set:

$$A = \{(1, 2), (2, 4), (3, 6), \dots\}$$

$$B = \{(2, 3), (4, 6), (6, 9), \dots\}$$

There is no member common to both these sets.

Therefore, $A \cap B = \emptyset$

Hence, option (d) is correct.

28. (c) Given that the n^{th} term, $T_n = 3n + 7$

$$\therefore \text{Sum of } n \text{ terms, } S_n = \sum T_n$$

$$= \sum (3n + 7) = 3 \sum n + 7 \sum 1$$

$$= \frac{3n(n+1)}{2} + 7n = n \left[\frac{3n+3+14}{2} \right] = n \left[\frac{3n+17}{2} \right]$$

$$\therefore \text{Sum of 50 terms, } S_{50} = 50 \left[\frac{3 \times 50 + 17}{2} \right] \\ = 50 \left[\frac{167}{2} \right] = 4175$$

Hence, option (c) is correct.

29. (a) We have $\sin(A+B)\sin(A-B)$

$$= \frac{1}{2} \{ 2 \sin(A+B)\sin(A-B) \} \\ = \frac{1}{2} \{ \cos(A-B-A-B) - \cos(A-B+A+B) \} \\ \quad [\because 2 \sin X \sin Y = \cos(X-Y) - \cos(X+Y)] \\ = \frac{1}{2} \{ \cos 2B - \cos 2A \}$$

$$\text{Similarly, } \sin(B+C)\sin(B-C) = \frac{1}{2} \{ \cos 2C - \cos 2B \}$$

$$\text{And, } \sin(C+A)\sin(C-A) = \frac{1}{2} \{ \cos 2A - \cos 2C \} \\ \therefore \sin(A+B)\sin(A-B) + \sin(B+C)\sin(B-C) \\ + \sin(C+A)\sin(C-A) \\ = \frac{1}{2} \{ \cos 2C - \cos 2B + \cos 2A - \cos 2C + \cos 2B - \cos 2A \} \\ = 0$$

Hence, option (a) is correct.

30. (d) As given $(p+2q)x + (p-3q)y = p-q$

$$\Rightarrow px + 2qx + py - 3qy = p - q$$

$$\Rightarrow p(x+y) - (3y-2x) = p - q$$

Equating co-efficient of p and q , we get

$$x+y=1 \text{ and } 3y-2x=1$$

Solving these, we get

$$x = \frac{2}{5}, y = \frac{3}{5}$$

So, line passes through $\left(\frac{2}{5}, \frac{3}{5} \right)$

Hence, option (d) is correct.

31. (c) Since, the probabilities of failure for engines A , B and C are $P(A) = 0.03$, $P(B) = 0.02$ and $P(C) = 0.05$ respectively.

The aircraft will crash only when all three engine fail.

$$\text{So, probability that it crashes} = P(A)P(B)P(C)$$

$$= 0.03 \times 0.02 \times 0.05 \\ = 0.00003$$

Hence, the probability that the aircraft will not crash is

$$= 1 - 0.00003 \\ = 0.99997$$

Hence, option (c) is correct.

32. (c) Let $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = B$, then

$$BA = \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix} \Rightarrow A = B^{-1} \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix} \text{ and } |B| = 3 \\ \therefore \text{adj } B = \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} \text{ and } B = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} \\ \Rightarrow A = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix} \\ = \frac{1}{3} \begin{bmatrix} -3-12 & -6 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} -5 & -2 \\ 2 & 1 \end{bmatrix}$$

Hence, option (c) is correct.

33. (c) Let $I = \int (x^2 + 1)^{\frac{5}{2}} x \, dx$

$$\text{Put } x^2 + 1 = t \Rightarrow 2x \, dx = dt \Rightarrow x \, dx = \frac{1}{2} dt$$

$$\therefore I = \frac{1}{2} \int t^{\frac{5}{2}} dt = \frac{1}{2} \left(\frac{t^{\frac{7}{2}}}{7/2} \right) + c = \frac{1}{7} t^{\frac{7}{2}} + c$$

$$\Rightarrow I = \frac{1}{7} (x^2 + 1)^{\frac{7}{2}} + c$$

Hence, option (c) is correct.

34. (b) Here $\frac{d(\sqrt{1-x^2})}{d(\sin^{-1} x)} = \frac{d}{dx} \left(\sqrt{1-x^2} \right) \frac{d}{dx} (\sin^{-1} x)$ is to be found.

We have $f(x) = \sqrt{1-x^2}$

$$\text{So, } f'(x) = \frac{d}{dx}(\sqrt{1-x^2}) = \frac{1}{2\sqrt{1-x^2}}(-2x) = \frac{-x}{\sqrt{1-x^2}}$$

Also, $g(x) = \sin^{-1} x$

$$\text{So, } g'(x) = \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$

$$\therefore \frac{f'(x)}{g'(x)} = \frac{-x/\sqrt{1-x^2}}{1/\sqrt{1-x^2}} = -x$$

Hence, option (b) is correct.

35. (a) Let $(1,3,4), (-1,6,10), (-7,4,7)$ and $(-5,1,1)$ be the coordinates of points A, B, C and D respectively.

Therefore,

$$AB = \sqrt{(-1-1)^2 + (6-3)^2 + (10-4)^2} = \sqrt{4+9+36} = 7$$

$$BC = \sqrt{(-7+1)^2 + (4-6)^2 + (7-10)^2} = \sqrt{36+4+9} = 7$$

$$CD = \sqrt{(-5+7)^2 + (1-4)^2 + (1-7)^2} = \sqrt{4+9+36} = 7$$

$$DA = \sqrt{(1+5)^2 + (3-1)^2 + (4-1)^2} = \sqrt{36+4+9} = 7$$

$$\text{Also, } AC = \sqrt{(-7-1)^2 + (4-3)^2 + (7-4)^2} \\ = \sqrt{64+1+9} = \sqrt{74}$$

$$\text{And, } BD = \sqrt{(-5+1)^2 + (1-6)^2 + (1-10)^2} \\ = \sqrt{16+25+81} = \sqrt{122}$$

$\therefore AB = BC = CD = DA$ but $BD \neq AC$

$\therefore A, B, C$ and D are the vertices of a rhombus.

Hence, option (a) is correct.

36. (b) If \vec{p} and \vec{q} are unit vectors which makes an angle $\frac{\pi}{3}$ with each other.

$$\text{Then, } \vec{p} \cdot \vec{q} = |\vec{p}| |\vec{q}| \cos \frac{\pi}{3} = \frac{1}{2}$$

$$\text{Now, } \left| \vec{p} - \frac{1}{2} \vec{q} \right|^2 = |\vec{p}|^2 + \frac{1}{4} |\vec{q}|^2 - \frac{2}{2} \vec{p} \cdot \vec{q}$$

$$= 1 + \frac{1}{4} - \frac{1}{2} \quad \left[\text{since } |\vec{p}| = |\vec{q}| = 1 \right]$$

$$= \frac{5}{4} - \frac{1}{2} = \frac{5-2}{4} = \frac{3}{4}$$

$$\text{So, } \left| \vec{p} - \frac{1}{2} \vec{q} \right| = \frac{\sqrt{3}}{2}$$

Hence, option (b) is correct.

37. (b) Given equation is $(\log_3 x)^2 + \log_3 x < 2$

$$\Rightarrow (\log_3 x)^2 + \log_3 x - 2 < 0$$

$$\Rightarrow (\log_3 x + 2)(\log_3 x - 1) < 0$$

$$\Rightarrow -2 < \log_3 x < 1$$

$$\Rightarrow \log_3 3^{-2} < \log_3 x < \log_3 3$$

$$\Rightarrow \frac{1}{9} < x < 3$$

Hence, option (b) is correct.

38. (c) Given that $A = \{(x, y) | x + y \leq 4\}$ and

$$B = \{(x, y) | 2x + y \leq 0\}$$

Set A contains all the pairs in the interval $(-\infty, 2)$ and set B contains all the pairs in the interval $(-\infty, 0)$. So, $A \cap B$ shows a set containing all the pairs in the interval $[-\infty, 0]$.

$$\text{So, } A \cap B = \{(x, y) | x + y \leq 0\}$$

Hence, option (c) is correct.

39. (d) The given series is $3, 7, 13, 21, 31, 43, \dots$

Let,

$$S = 3 + 7 + 13 + 21 + 31 + \dots + a_n$$

$$-S = -(3 + 7 + 13 + 21 + 31 + \dots + a_{n-1} + a_n)$$

$$0 = 3 + 4 + 6 + 8 + 10 + 12 + \dots - a_n$$

$$\Rightarrow a_n = 3 + [4 + 6 + 8 + 10 + 12 + \dots + (n-1)]$$

$$\Rightarrow a_n = 3 + \frac{(n-1)}{2} [8 + \{(n-1)-1\} \times 2]$$

$$\Rightarrow a_n = 3 + \frac{(n-1)}{2} [8 + 2n - 4]$$

$$\Rightarrow a_n = 3 + \frac{(n-1)}{2} (2n + 4)$$

$$\Rightarrow a_n = 3 + (n-1)(n+2)$$

$$\therefore \text{The } 15^{\text{th}} \text{ term} = a_{15} = 3 + (15-1)(15+2) = 241$$

Hence, option (d) is correct.

40. (b) From the relation between minute 6 seconds measure $60'' = 1'$

$$\Rightarrow 30'' = \frac{1'}{2} \Rightarrow 35'30'' = \left(35 + \frac{1}{2}\right)' = \left(\frac{71}{2}\right)'$$

$$\text{Also, } 60' = 1^\circ$$

$$\Rightarrow \left(\frac{71}{2}\right)' = \left(\frac{71}{2} \times \frac{1}{60}\right)^\circ = \left(\frac{71}{120}\right)^\circ$$

$$\therefore 114^\circ 35' 30'' = \left(114 + \frac{71}{120}\right)^\circ = \left(\frac{13751}{120}\right)^\circ$$

$$\text{We know that } 2\pi \text{ rad} = 360^\circ \Rightarrow 1^\circ = \frac{2\pi}{360} \text{ rad}$$

$$\therefore \left(\frac{13751}{120}\right)^\circ = \frac{2\pi}{360^\circ} \times \frac{13751}{120} \text{ rad}$$

$$= \frac{2 \times 22 \times 13751}{7 \times 360 \times 120} \text{ rad} \approx 2.0008069 \text{ rad}$$

$$\Rightarrow 114^\circ 35' 30'' = 2\pi \text{ rad (approx)}$$

Hence, option (b) is correct.

41. (b) Let point $P(x_1, y_1)$ be equidistant from point

$$A(1, 2) \text{ and } B(3, 4)$$

$$\therefore PA = PB$$

$$\Rightarrow PA^2 = PB^2$$

$$\Rightarrow (1-x_1)^2 + (2-y_1)^2 = (3-x_1)^2 + (4-y_1)^2$$

$$\Rightarrow 1+x_1^2-2x_1+4+y_1^2-4y_1 = 9+x_1^2-6x_1+16+y_1^2-8y_1$$

$$\Rightarrow 4x_1 + 4y_1 = 20$$

$$\Rightarrow x_1 + y_1 = 5 \quad \dots \text{(i)}$$

$$\text{As } P(x_1, y_1) \text{ lies on } 2x - 3y = 5$$

$$\therefore 2x_1 - 3y_1 = 5 \quad \dots \text{(ii)}$$

On solving equations (i) and (ii), we get

$$x_1 = 4 \text{ and } y_1 = 1$$

$$\therefore \text{Coordinates of } p \text{ are } (4, 1).$$

Hence, option (b) is correct.

42. (b) Given hyperbola is $4x^2 - 9y^2 - 1 = 0$

$$\Rightarrow \frac{x^2}{\left(\frac{1}{2}\right)^2} - \frac{y^2}{\left(\frac{1}{3}\right)^2} = 1$$

$$\therefore \text{Eccentricity, } e = \sqrt{1 + \left(\frac{1}{3}\right)^2} = \frac{\sqrt{13}}{3}$$

$$\text{So, foci} = \left(\pm \frac{1}{2} \times \frac{\sqrt{13}}{3}, 0\right) = \left(\pm \frac{\sqrt{13}}{6}, 0\right)$$

Hence, option (b) is correct.

43. (b) Consider $\sin^{-1} \frac{4}{5} + 2 \tan^{-1} \frac{1}{3}$

$$\begin{aligned}
 &= \tan^{-1} \left(\frac{4/5}{\sqrt{1-16/25}} \right) + \tan^{-1} \left(\frac{2/3}{1-1/9} \right) \\
 &= \tan^{-1} \left(\frac{4/5}{\sqrt{1-x^2}} \right) + 2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1-x^2} \right) \\
 &= \tan^{-1} \left(\frac{4/5}{3/5} \right) + \tan^{-1} \left(\frac{2/3}{8/9} \right) \\
 &= \tan^{-1} \left(\frac{4}{3} \right) + \tan^{-1} \left(\frac{3}{4} \right) \\
 &= \tan^{-1} \left(\frac{4}{3} \right) + \cot^{-1} \left(\frac{4}{3} \right) \\
 &= \frac{\pi}{2} \quad \left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]
 \end{aligned}$$

Hence, option (b) is correct.

44. (c) Let $I = \int \frac{\log x}{(1+\log x)^2} dx$

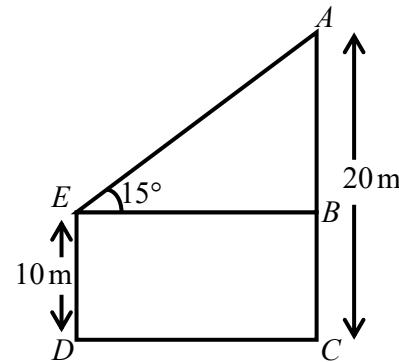
$$\text{Put } \log x = t \Rightarrow \frac{1}{x} dx = dt \Rightarrow dx = xdt \Rightarrow dx = e^t dt$$

Therefore,

$$\begin{aligned}
 I &= \int \frac{e^t t}{(1+t)^2} dt = \int \frac{e^t (t+1-1)}{(1+t)^2} dt \\
 &= \int \frac{e^t (1+t)}{(1+t)^2} dt - \int \frac{e^t}{(1+t)^2} dt \\
 &= \int \frac{e^t}{(1+t)} dt - \int \frac{e^t}{(1+t)^2} dt \\
 &= \frac{e^t}{(1+t)} - \int -e^t \frac{1}{(1+t)^2} dt - \int \frac{e^t}{(1+t)^2} dt \\
 &= \frac{e^t}{(1+t)} + \int \frac{e^t}{(1+t)^2} dt - \int \frac{e^t}{(1+t)^2} dt \\
 &= \frac{e^t}{(1+t)} + c \\
 \therefore I &= \frac{x}{(1+\log x)} + c
 \end{aligned}$$

Hence, option (c) is correct.

45. (b) Let AC and ED be two poles of height 20m and 10m respectively.
Let $\angle AEB = 15^\circ$



$$\text{Now, } AB = AC - BC = AC - ED = 20 - 10 = 10\text{m}$$

$$\text{Now, in } \triangle ABE, \quad (\because BC = ED)$$

$$\tan 15^\circ = \frac{AB}{BE}$$

$$\Rightarrow \tan(45^\circ - 30^\circ) = \frac{10}{BE}$$

$$\Rightarrow \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} = \frac{10}{BE}$$

$$\left(\because \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \right)$$

$$\Rightarrow \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{10}{BE}$$

$$\Rightarrow BE = 10 \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1} \right) = \frac{10 \times (\sqrt{3} + 1)^2}{2}$$

$$\Rightarrow BE = 5(3 + 1 + 2\sqrt{3}) = 37.3$$

$$\text{Thus } CD = BE = 37.3\text{m}$$

Hence, option (b) is correct.

46. (d) Given that $f(x) = \frac{x^2}{1+x^2}$

Since, numerator is less than denominator.

$f(x) < 1$ for all values of x (negative or positive) and

$f(x) = 0$ for $x = 0$.

So, range of f is $[0, 1)$

Hence, option (d) is correct.

47. (a) Let $y = \tan^{-1} \left(\frac{\sqrt{x}-x}{1+x^{3/2}} \right) = \tan^{-1} \left(\frac{\sqrt{x}-x}{1+x\sqrt{x}} \right)$
 $= \tan^{-1} \sqrt{x} - \tan^{-1} x$

On differentiating w.r.t. x , we get

$$\frac{dy}{dx} = \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{1+x^2}$$

$$\text{Now, } \left(\frac{dy}{dx} \right)_{x=1} = \frac{1}{1+1} \cdot \frac{1}{2} - \frac{1}{1+1} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$$

Hence, option (a) is correct.

48. (b) Given that $AB = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$

$$\text{Let } B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3a+2c & 3b+2d \\ a+2c & b+2d \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$$

$$\Rightarrow 3a+2c=4 \text{ and } a+2c=4 \quad \dots \text{(i)}$$

$$3b+2d=11 \text{ and } b+2d=5 \quad \dots \text{(ii)}$$

From equation set (i) $a=0$ and $c=2$ and from equation set (ii), $b=3$ and $d=1$

$$\Rightarrow B = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}$$

$$\text{Thus, } |B| = \begin{vmatrix} 0 & 3 \\ 2 & 1 \end{vmatrix} = 0-6=-6$$

Hence, option (b) is correct.

49. (c) Let $I = \int_{\ln 2}^x (e^x - 1)^{-1} dx = \int_{\ln 2}^x \frac{1}{(e^x - 1)} dx$

$$\text{Put } e^x - 1 = t \Rightarrow e^x = t+1$$

$$\therefore e^x dx = dt \Rightarrow dx = \frac{dt}{e^x} \Rightarrow dx = \frac{dt}{t+1}$$

$$\text{when } x = \ln 2, t = e^{\ln 2} - 1 = 2 - 1 = 1 \text{ and } I = \int_1^t \frac{1}{t(t+1)} dt$$

Breaking into partial fractions, we get

$$\frac{1}{t(t+1)} = \frac{1}{t} - \frac{1}{t+1}$$

And,

$$\begin{aligned} I &= \int_1^t \left(\frac{1}{t} - \frac{1}{t+1} \right) dt = \left[\log_e t - \log_e (t+1) \right]_1^t \\ &= \left[\log_e \frac{t}{t+1} \right]_1^t = \log_e \frac{t}{t+1} - \log_e \frac{1}{2} \\ &= \log_e \frac{2t}{t+1} = \log_e \frac{3}{2} \quad \left[\text{since, } \int_{\ln 2}^x (e^x - 1)^{-1} dx = \log_e \frac{3}{2} \right] \end{aligned}$$

$$\text{So, } \frac{2t}{t+1} = \frac{3}{2} \Rightarrow 4t = 3t+3 \Rightarrow t = 3$$

$$\text{Thus, } e^x - 1 = 3 \Rightarrow e^x = 4 \Rightarrow x = \ln 4$$

Hence, option (c) is correct.

50. (b) For a function to be continuous at a point, the limit should exist and should be equal to the value of the function at that point.

Here, point is $x=0$

$$\text{And } \lim_{x \rightarrow 0} f(x) = \lim_{x \rightarrow 0} (x+1)^{\cot x}$$

$$\begin{aligned} &= \lim_{x \rightarrow 0} (x+1)^{\frac{1}{x} \cdot x \cot x} = \lim_{x \rightarrow 0} (x+1)^{\frac{1}{x} \cdot \lim_{x \rightarrow 0} \frac{x \cot x}{x}} \\ &= e^1 = e \end{aligned}$$

Since, limiting value of $f(x)=e$, when $x \rightarrow 0$, $f(0)$ should also be equal to e .

Hence, option (b) is correct.

51. (b) Given equation $\cos 2x + a \sin x = 2a - 7$ can be written as

$$\cos^2 x - \sin^2 x + a \sin x = 2a - 7$$

$$\Rightarrow 1 - \sin^2 x - \sin^2 x + a \sin x = 2a - 7$$

$$\Rightarrow 2 \sin^2 x - a \sin x + (2a - 7 - 1) = 0$$

$$\Rightarrow 2 \sin^2 x - a \sin x + 2a - 8 = 0$$

This is a quadratic equation in $\sin x$ and its discriminant ≥ 0

$$\text{Here, } a=2, b=-a, c=2a-8$$

$$\Rightarrow a^2 - 4 \times 2 \times (2a - 8) \geq 0$$

$$\Rightarrow a^2 - 16a + 64 \geq 0$$

$$\Rightarrow (a-8)^2 \geq 0 \Rightarrow a \geq 8$$

Hence, option (b) is correct.

52. (b) The total number of students = 500

Let H be the set showing number of students who can speak Hindi = 475 and B be the set showing number of students who can speak Bengali = 200

$$\text{So, } n(H) = 475, n(B) = 200 \text{ and } n(B \cup H) = 500.$$

We have

$$n(B \cup H) = n(B) + n(H) - n(B \cap H)$$

$$\Rightarrow 500 = 200 + 475 - n(B \cap H)$$

$$\text{So, } n(B \cap H) = 175$$

Therefore, the persons who speak Hindi only is given by $= n(H) - n(B \cap H) = 475 - 175 = 300$.

Hence, option (b) is correct.

53. (c) Let $z_1 = \alpha + i\beta$ and $z_2 = \beta + i\alpha$

$$\text{Since, } \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

$$\therefore \left| \frac{\alpha + i\beta}{\beta + i\alpha} \right| = \frac{|\alpha + i\beta|}{|\beta + i\alpha|} = \frac{\sqrt{\alpha^2 + \beta^2}}{\sqrt{\beta^2 + \alpha^2}} = 1$$

Hence, option (c) is correct.

54. (c) Given that $\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 \cos 4A}}}$

$$= \sqrt{2 + \sqrt{2 + \sqrt{2(1 + \cos 4A)}}}$$

$$= \sqrt{2 + \sqrt{2 + 2 \cos 2A}} = \sqrt{2 + \sqrt{2(1 + \cos 2A)}} \\ (\because 1 + \cos 4A = 2 \cos^2 2A)$$

$$= \sqrt{2 + 2 \cos A} = \sqrt{2(1 + \cos A)} \\ (\because 1 + \cos 2A = 2 \cos^2 A)$$

$$= 2 \cos\left(\frac{A}{2}\right) \quad (\because 1 + \cos 2A = 2 \cos^2 A)$$

Hence, option (c) is correct.

55. (a) Equation of a straight line in intercept form is

$$\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow \frac{3}{a} + \frac{4}{b} = 1 \quad \dots \text{(i)}$$

$$\text{Given } a+b=14 \quad \dots \text{(ii)}$$

On solving (i) and (ii), we get

$$\frac{3}{a} + \frac{4}{14-a} = 1 \Rightarrow a^2 - 13a + 42 = 0$$

$$\Rightarrow (a-7)(a-6) = 0$$

$$\Rightarrow a = 6 \text{ and } b = 8$$

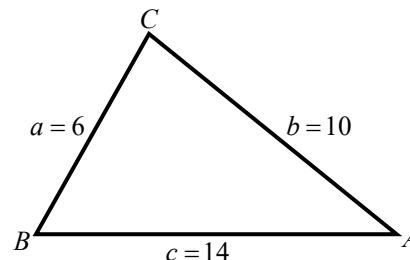
$$\text{or } a = 7 \text{ and } b = 7$$

\therefore Required equations are $4x+3y=24$ or $x+y=1$

Hence, option (a) is correct.

56. (c) Since, $c=14$ is the largest side

\therefore Angle C will be obtuse



$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(6)^2 + (10)^2 - (14)^2}{2(6)(10)} \\ = \frac{36 + 100 - 196}{2 \times 6 \times 10} = -\frac{1}{2}$$

$$\Rightarrow C = \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} = \frac{2 \times 180}{3} = 120^\circ$$

Hence, option (c) is correct.

57. (c) As given $\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{abc}]}$, $\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{abc}]}$, $\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{abc}]}$

$$\therefore (\vec{a} - \vec{b} - \vec{c}) \cdot \vec{p} + (\vec{b} - \vec{c} - \vec{a}) \cdot \vec{q} + (\vec{c} - \vec{a} - \vec{b}) \cdot \vec{r}$$

$$= \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{[\vec{abc}]} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{[\vec{abc}]} + \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{[\vec{abc}]}$$

$$\left[\text{Since, } \vec{b} \cdot (\vec{b} \times \vec{c}) = 0, \vec{c} \cdot (\vec{b} \times \vec{c}) = 0, \vec{c} \cdot (\vec{c} \times \vec{a}) = 0 \right]$$

$$\begin{aligned} \vec{a} \cdot (\vec{c} \times \vec{a}) &= 0 \quad \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \text{ and } \vec{b} \cdot (\vec{a} \times \vec{b}) = 0 \\ &= \left[\begin{array}{c} \vec{a} \vec{b} \vec{c} \\ \vec{a} \vec{b} \vec{c} \\ \vec{a} \vec{b} \vec{c} \end{array} \right] + \left[\begin{array}{c} \vec{a} \vec{b} \vec{c} \\ \vec{a} \vec{b} \vec{c} \\ \vec{a} \vec{b} \vec{c} \end{array} \right] + \left[\begin{array}{c} \vec{a} \vec{b} \vec{c} \\ \vec{a} \vec{b} \vec{c} \\ \vec{a} \vec{b} \vec{c} \end{array} \right] \\ &= 3 \end{aligned}$$

Hence, option (c) is correct.

58. (a) Let $\frac{dy}{dx} = 1 + x + y + xy$

$$\Rightarrow \frac{dy}{dx} = (1+x)(1+y)$$

$$\Rightarrow \frac{dy}{1+y} = (1+x)dx$$

$$\Rightarrow \int \frac{1}{1+y} dy = \int (1+x) dx$$

$$\Rightarrow \log(1+y) = x + \frac{x^2}{2} + c$$

Given, at $x = -1, y = 0$

$$\Rightarrow \log(1+0) = -1 + \frac{1}{2} + c$$

$$\Rightarrow c = \frac{1}{2}$$

$$\therefore \log(1+y) = x + \frac{x^2}{2} + \frac{1}{2} = \frac{(1+x)^2}{2}$$

$$\Rightarrow 1+y = e^{\frac{(1+x)^2}{2}}$$

$$\Rightarrow y = e^{\frac{(1+x)^2}{2}} - 1$$

Hence, option (a) is correct.

59. (b) We know that sum of square of direction cosines = 1

$$\text{i.e. } \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

$$\Rightarrow \cos^2 45^\circ + \cos^2 \beta + \cos^2 \beta = 1$$

(As given $\alpha = 45^\circ$ and $\beta = \gamma$)

$$\Rightarrow \frac{1}{2} + 2 \cos^2 \beta = 1$$

$$\Rightarrow \cos^2 \beta = \frac{1}{4}$$

$$\Rightarrow \cos \beta = \pm \frac{1}{2}$$

Negative value is discarded, since the line makes angle with positive axes.

Thus, $\cos \beta = \frac{1}{2}$

$$\Rightarrow \cos \beta = \cos 60^\circ$$

$$\Rightarrow \beta = 60^\circ$$

$$\therefore \text{Required sum } \alpha + \beta + \gamma = 45^\circ + 60^\circ + 60^\circ = 165^\circ$$

Hence, option (b) is correct.

60. (c) Given function is:

$$f(x) = \begin{cases} 3x - 4, & 0 \leq x \leq 2 \\ 2x + l, & 2 < x \leq 9 \end{cases}$$

And also given that $f(x)$ is continuous at $x = 2$.

For a function to be continuous at a point, $\text{LHL} = \text{RHL} = \text{V.F}$ at that point, $f(2) = 2 = \text{V.F.}$

$$\Rightarrow \text{RHL} = \lim_{x \rightarrow 2} (2x + l) = 3(2) - 4$$

$$\Rightarrow \lim_{h \rightarrow 0} \{2(2+h) + l\} = 6 - 4$$

$$\Rightarrow 4 + l = 2$$

$$\Rightarrow l = -2$$

Hence, option (c) is correct.

61. (c) The given system are

$$kx + y + z = k - 1$$

$$x + ky + z = k - 1$$

$$x + y + kz = k - 1$$

$$\therefore A = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}, B = \begin{bmatrix} k-1 \\ k-1 \\ k-1 \end{bmatrix} \text{ and } x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\text{Now, } |A| = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix}$$

$$\begin{aligned}
 &= k(k^2 - 1) - 1(k-1) + 1(k-1) \\
 &= k^3 - k - k + 1 + 1 - k \\
 &= k^3 - 3k + 2
 \end{aligned}$$

This given system of equation has no solution if $|A|=0$

$$\Rightarrow k^3 - 3k + 2 = 0 \Rightarrow (k-1)^2(k+2) = 0$$

$$\Rightarrow k=1 \text{ or } k=-2$$

Hence, option (c) is correct.

62. (c) 16 tickets are sold and 4 prizes are awarded.

A person buys 4 tickets, then the required probability is

$$= \frac{4}{16} = \frac{1}{4}$$

Hence, option (c) is correct.

63. (c) Let $x = t^2$ and $y = t^3$

$$\Rightarrow \frac{dx}{dt} = 2t \text{ and } \frac{dy}{dt} = 3t^2$$

$$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2}{2t} = \frac{3}{2}t$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{3}{2} \cdot \frac{dt}{dx} = \frac{3}{2} \cdot \frac{1}{2t} = \frac{3}{4t} \quad \left(\because \frac{dx}{dt} = 2t \right)$$

Hence, option (c) is correct.

64. (d) The equation of the line is $\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-4}{5} = r$

where r is a constant. Any point on this line is given by $x = 2r+2$, $y = 3r+2$, $z = 5r+4$

Since, a plane that is parallel to z -axis will have no z -coordinates, $z = 0$

$$z = 0 \Rightarrow 5r+4 = 0 \Rightarrow r = -\frac{4}{5}$$

Putting this value of r for x and y coordinates,

$$x = 2r+2 = 2\left(-\frac{4}{5}\right) + 2$$

$$\Rightarrow 5x = -8 + 10$$

$$\Rightarrow x = \frac{2}{5} \text{ or } \frac{2}{x} = 5 \quad \dots \text{(i)}$$

Similarly,

$$y = 3r+3 = 3\left(-\frac{4}{5} + 3\right)$$

$$\Rightarrow 5y = -12 + 15$$

$$\Rightarrow y = \frac{3}{5} \text{ or } \frac{3}{y} = 5 \quad \dots \text{(ii)}$$

From equation (i) and (ii), we get

$$\frac{2}{x} = \frac{3}{y} \Rightarrow 3x - 2y = 0$$

Hence, option (d) is correct.

65. (c) Let the numbers are x and y

$$\text{So, } x+y=20, \text{ Let } P = x^2y^3 = x^2(20-x)^3 \quad (\text{As given})$$

Differentiating w.r.t. x , we get

$$\begin{aligned}
 \frac{dP}{dx} &= x^2 \cdot 3(20-x)^2(-1) + (20-x)^3 \cdot 2x \\
 &= (20-x)^2[-3x^2 + 40x - 2x^2] \\
 &= (20-x)^2(40x - 5x^2)
 \end{aligned}$$

$$\frac{d^2P}{dx^2} = (20-x)^2[40-10x] + (40x-5x^2) \cdot 2(20-x)(-1)$$

$$\frac{dP}{dx} = 0 \text{ for maxima or minima}$$

$$\text{So, } (20-x)^2(40x - 5x^2) = 0$$

$$\Rightarrow x(20-x)^2(40-5x) = 0$$

$$\Rightarrow x = 0, 8, 20$$

$$\text{We get } \left(\frac{d^2P}{dx^2}\right)_{x=8} < 0; \left(\frac{d^2P}{dx^2}\right)_{x=0} > 0 \text{ and } \left(\frac{d^2P}{dx^2}\right)_{x=20} = 0$$

Hence, P is maximum at $x = 8$ and numbers are 12 and 8.

Hence, option (c) is correct.

66. (b) Since, circle is touching y -axis at origin, its center lies on x -axis. Let the centre be $(a, 0)$ and its radius is a

$$\begin{aligned}
 \therefore (x-a)^2 + y^2 &= a^2 \\
 \Rightarrow x^2 + a^2 - 2ax + y^2 &= a^2 \\
 \Rightarrow x^2 + y^2 - 2ax &= 0 \quad \dots(i) \\
 \Rightarrow a &= \frac{x^2 + y^2}{2x}
 \end{aligned}$$

Differentiating both sides, we get

$$\begin{aligned}
 \Rightarrow 2x + 2y \frac{dy}{dx} - 2a &= 0 \\
 \Rightarrow 2x + 2y \frac{dy}{dx} - \frac{x^2 + y^2}{x} &= 0 \\
 \Rightarrow 2x^2 + 2xy \frac{dy}{dx} - x^2 - y^2 &= 0 \\
 \Rightarrow 2xy \frac{dy}{dx} &= y^2 - x^2
 \end{aligned}$$

Hence, option (b) is correct.

67. (a) The given integral is $I = \int \frac{dx}{\sqrt{x^2 + a^2}}$

$$\text{Let } x = a \tan u \Rightarrow dx = a \sec^2 u du$$

Therefore, we have

$$\begin{aligned}
 I &= \int \frac{a \sec^2 u du}{\sqrt{a^2 \tan^2 u + a^2}} = a \int \frac{\sec^2 u du}{\sqrt{a^2 (\tan^2 u + 1)}} \\
 &= \frac{a}{a} \int \frac{\sec^2 u du}{\sqrt{\tan^2 u + 1}} = \int \frac{\sec^2 u}{\sqrt{\sec^2 u}} du \\
 &= \int \sec u du \\
 &= \ln [\tan(u) + \sec(u)] + c \\
 &= \ln \left[\frac{x}{\sqrt{a^2}} + \sqrt{1 + \frac{x^2}{a^2}} \right] + c \\
 &= \ln \left[\frac{x}{a} + \frac{\sqrt{a^2 + x^2}}{a} \right] + c \\
 &= \ln \left[\frac{x + \sqrt{a^2 + x^2}}{a} \right] + c
 \end{aligned}$$

Hence, option (a) is correct.

68. (b) Let $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$

If A is a square matrix of order n , then

$$A(\text{adj}A) = |A| \cdot I_n$$

Here $n = 2$

$$\begin{aligned}
 &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (12 - 2) = 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\
 &= \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}
 \end{aligned}$$

Hence, option (b) is correct.

69. (a) Given that $x^{1/3} + y^{1/3} + z^{1/3} = 0 \Rightarrow x^{1/3} = -(y^{1/3} + z^{1/3})$

Raising both the sides to the power of cube, we get

$$\begin{aligned}
 x &= -\{y + z + 3y^{1/3}z^{1/3}(y^{1/3} + z^{1/3})\} \\
 &\quad \left\{ \because (a+b)^3 = a^3 + b^3 + 3ab(a+b) \right\}
 \end{aligned}$$

$$x = -\{y + z + 3y^{1/3}z^{1/3}(-x^{1/3})\}$$

$$x = -\{y + z - 3x^{1/3}y^{1/3}z^{1/3}\}$$

$$x = -y - z + 3x^{1/3}y^{1/3}z^{1/3}$$

$$\Rightarrow x + y + z = 3x^{1/3}y^{1/3}z^{1/3}$$

$$\begin{aligned}
 &\Rightarrow x + y + z = 3(xy whole)^{1/3} \\
 &\Rightarrow (x + y + z)^3 = 27xyz
 \end{aligned}$$

Hence, option (d) is correct.

70. (d) Converting from binary to decimal, we have

$$(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 1 = 9$$

$$(11)_2 = 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3$$

$$(101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 4 + 1 = 5$$

$$(10)_2 = 1 \times 2^1 + 0 \times 2^0 = 2$$

$$(01)_2 = 0 \times 2^1 + 1 \times 2^0 = 1$$

$$\begin{aligned}
 & \therefore \frac{(1001)_2^{(11)_2} - (1001)_2^{(11)_2}}{(1001)_2^{(10)_2} + (1001)_2^{(01)_2} (101)_2^{(01)_2} + (101)_2^{(10)_2}} \\
 &= \frac{9^3 - 5^3}{9^2 + 9 \times 5 + 5^2} \\
 &= \frac{(9-5)(9^2 + 9 \times 5 + 5^2)}{9^2 + 9 \times 5 + 5^2} \\
 &= 4 \\
 &= (100)_2 \quad \{ \text{converting from decimal to binary} \}
 \end{aligned}$$

Hence, option (d) is correct.

71. (c) Let 1, ω and ω^2 are the three cube roots of unity.

$$1 + \omega + \omega^2 = 0 \text{ and } \omega^3 = 1$$

The given expression is

$$\begin{aligned}
 \frac{a\omega^6 + b\omega^4 + c\omega^2}{b + c\omega^{10} + a\omega^8} &= \frac{a + b\omega + c\omega^2}{b + c\omega + a\omega^2} \quad [\omega^6 = 1, \omega^4 = \omega] \\
 &= \frac{\omega(a + b\omega + c\omega^2)}{\omega(b + c\omega + a\omega^2)} \\
 &= \frac{\omega(a + b\omega + c\omega^2)}{(b\omega + c\omega^2 + a\omega^3)} \\
 &= \frac{\omega(a + b\omega + c\omega^2)}{(a + b\omega + c\omega^2)} = \omega
 \end{aligned}$$

Hence, option (c) is correct.

72. (d) Given that $1 - \sin 10^\circ \sin 50^\circ \sin 70^\circ$

$$\begin{aligned}
 &= 1 - \frac{1}{2} [2 \sin 70^\circ \sin 10^\circ \sin 50^\circ] \\
 &= 1 - \frac{1}{2} [(\cos 60^\circ - \cos 80^\circ) \sin 50^\circ] \\
 &\quad (\because 2 \sin A \sin B = \cos(A-B) - \cos(A+B)) \\
 &= 1 - \frac{1}{2} \left[\frac{1}{2} \sin 50^\circ - \frac{1}{2} \cos 80^\circ \sin 50^\circ \right] \\
 &= 1 - \frac{1}{4} [\sin 50^\circ - \sin 130^\circ + \sin 30^\circ] \\
 &\quad (\because 2 \cos A \sin B = \sin(A+B) - \sin(A-B))
 \end{aligned}$$

$$\begin{aligned}
 &= 1 - \frac{1}{4} [\sin 50^\circ - \sin 50^\circ + \sin 30^\circ] \\
 &\quad (\because \sin 130^\circ = \sin(180^\circ - 50^\circ) = \sin 50^\circ) \\
 &= 1 - \frac{1}{4} \left[\frac{1}{2} \right] \\
 &= 1 - \frac{1}{8} = \frac{7}{8}
 \end{aligned}$$

Hence, option (d) is correct.

73. (a) Let the equation of hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$\begin{aligned}
 \text{Latus rectum} &= 8 = \frac{2b^2}{a} \Rightarrow b^2 = 4a \quad \dots(i) \\
 \text{Also, } b^2 &= a^2(e^2 - 1) \\
 \Rightarrow 4a &= a^2(e^2 - 1) \quad [\text{from (i)}] \\
 \Rightarrow 4a &= a^2 \left[\left(\frac{3}{\sqrt{5}} \right)^2 - 1 \right] \\
 \Rightarrow a &= 5 \text{ and } b^2 = 20
 \end{aligned}$$

$$\therefore \text{Equation of hyperbola is } \frac{x^2}{25} - \frac{y^2}{20} = 1$$

Hence, option (a) is correct.

74. (d) We know that $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

$$\Rightarrow \cos C = \frac{(18)^2 + (24)^2 - (30)^2}{2 \times 18 \times 24} = \frac{9 + 16 - 25}{2 \times 3 \times 4} = 0$$

$$\text{Now, } \sin C = \sqrt{1 - \cos^2 C} = \sqrt{1 - 0} = 1$$

$$\text{Hence, } \sin C = 1$$

Hence, option (d) is correct.

75. (a) Given function is $f(x) = \sin(|x|)$

$$\Rightarrow f(x) = \begin{cases} \sin(x), & x \geq 0 \\ \sin(-x), & x < 0 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \sin x, & x \geq 0 \\ -\sin x, & x < 0 \end{cases}$$

$$\begin{aligned}\text{LHD at } x=0 &= \lim_{h \rightarrow 0} \frac{f(0-h) - f(0)}{0-h-0} \\ &= \lim_{h \rightarrow 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \rightarrow 0} \frac{-\sin(-h) - 0}{-h} = -1 \\ \text{RHD at } x=0 &= \lim_{h \rightarrow 0} \frac{f(0+h) - f(0)}{0+h-0} \\ &= \lim_{h \rightarrow 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \rightarrow 0} \frac{\sin(h) - 0}{h} = 1\end{aligned}$$

Since, LHD \neq RHD

$f(x)$ is not differentiable at $x=0$.

Hence, option (a) is correct.

76. (c) Total number of selecting 3 components out of 10
 $= {}^{10}C_3$

Out of 3 selected components two defective pieces can be selected in 4C_2 ways and one non-defective piece will be selected in 6C_1 ways.

Thus, required probability is

$$= \frac{{}^6C_1 \times {}^4C_2}{{}^{10}C_3} = \frac{6 \times 6 \times 6}{10 \times 9 \times 8} = \frac{3}{10}$$

Hence, option (c) is correct.

77. (a) Since, α and β are the roots of the equation $ax^2 + bx + c = 0$ then,

$$\text{Sum of the roots, } \alpha + \beta = -\frac{b}{a}$$

$$\text{Product of the roots, } \alpha\beta = \frac{c}{a}$$

The expression $(a\alpha+b)^{-1} + (a\beta+b)^{-1}$

$$= \frac{1}{a\alpha+b} + \frac{1}{a\beta+b} = \frac{a\beta+b+a\alpha+b}{(a\alpha+b)(a\beta+b)}$$

$$= \frac{a(\alpha+\beta)+2b}{a^2\alpha\beta+ab(\alpha+\beta)+b^2}$$

$$= \frac{a\left(-\frac{b}{a}\right)+2b}{a^2\left(\frac{c}{a}\right)+ab\left(-\frac{b}{a}\right)+b^2}$$

$$= \frac{-b+2b}{ac-b^2+b^2} = \frac{b}{ac}$$

Hence, option (b) is correct.

78. (c) Given that $P = \{p_1, p_2, p_3, p_4\}$, $Q = \{q_1, q_2, q_3, q_4\}$ and $R = \{r_1, r_2, r_3, r_4\}$
 $\therefore S_{10} = \{(p_2, q_4, r_4), (p_3, q_3, r_4), (p_3, q_4, r_3), (p_4, q_2, r_4), (p_4, q_3, r_3), (p_4, q_4, r_2)\}$

\therefore Total number of elements in S_{10} is 6.

Hence, option (c) is correct.

79. (b) From cube root of infinity, we have

$$\omega = \frac{-1 + \sqrt{3}i}{2} \text{ and } \omega = \frac{-1 - \sqrt{3}i}{2}$$

Now,

$$\omega^3 = \left(\frac{-1 + \sqrt{3}i}{2}\right) \left(\frac{-1 - \sqrt{3}i}{2}\right) = \frac{(-1)^2 - (\sqrt{3}i)^2}{4} = \frac{4}{4} = 1$$

$$\therefore \left(\frac{-1 + i\sqrt{3}}{2}\right)^{3n} + \left(\frac{-1 - i\sqrt{3}}{2}\right)^{3n} = (\omega)^{3n} + (\omega^2)^{3n} = 1 + 1 = 2$$

Hence, option (b) is correct.

80. (b) Given that $(1 + \tan \theta)(1 + \tan \phi) = 2$

$$\Rightarrow 1 + \tan \theta + \tan \phi + \tan \theta \tan \phi = 2$$

$$\Rightarrow \tan \theta + \tan \phi = 1 - \tan \theta \tan \phi$$

$$\Rightarrow \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = 1$$

$$\Rightarrow \tan(\theta + \phi) = \tan 45^\circ$$

$$\Rightarrow \theta + \phi = 45^\circ$$

Hence, option (b) is correct.

81. (b) Given that $f(x) = \sqrt{9 - x^2}$

$$\therefore f'(x) = \frac{1}{2\sqrt{9 - x^2}} \cdot (-2x) = -\frac{x}{\sqrt{9 - x^2}}$$

For function to be increasing $f'(x) > 0$

$$-\frac{x}{\sqrt{9-x^2}} > 0 \Rightarrow -x > 0 \text{ or } x < 0$$

But $\sqrt{9-x^2}$ is defined only when

$$9-x^2 > 0 \text{ or } x^2 - 9 < 0$$

$$(x+3)(x-3) < 0$$

i.e. $-3 < x < 3$

$$-3 < x < 3 \cap x < 0$$

$$\Rightarrow -3 < x < 0$$

Hence, option (b) is correct.

82. (a) The given differential equation can be written as

$$\frac{dy}{dx} = y \tan x + \sec x$$

$$\text{or, } \frac{dy}{dx} - y \tan x = \sec x$$

which is of the form $\frac{dy}{dx} + P(x)y = Q(x)$

Here $P(x) = -\tan x$ and $Q(x) = \sec x$

Integrating factor IF = $e^{\int P(x)dx}$

$$\text{IF} = e^{\int -\tan x dx} = e^{\int -\frac{\sin x}{\cos x} dx}$$

Putting $\cos x = t \Rightarrow -\sin x dx = dt$

$$\therefore \text{IF} = e^{\int \frac{dt}{t}} = e^{\log_e t} = t = \cos x$$

Therefore, the solution is

$$y \cdot Q(x) = \int \text{IF} \cdot Q(x) dx + c$$

$$y \sec x = \int \cos x \cdot \sec x dx + c$$

$$y \sec x = \int dx + c$$

$$y \sec x = x + c$$

Since, the curve passes through the origin

$$0 = 0 + c \Rightarrow c = 0$$

And $y \sec x = x \Rightarrow y = x \cos x$

Hence, option (a) is correct.

83. (d) Consider first: $x^2 - 3x + 2 > 0$

$$\Rightarrow (x-1)(x-2) > 0$$

$$\Rightarrow x < 1 \text{ or } x > 2 \quad \dots(1)$$

And $x^2 - 3x - 4 \leq 0$

$$\Rightarrow (x-4)(x+2) \leq 0$$

$$\Rightarrow -1 \leq x \leq 4 \quad \dots(2)$$

Combining (1) and (2), we get

$$-1 \leq x < 1 \text{ or } 2 < x \leq 4$$

Hence, option (d) is correct.

84. (c) The maximum three digit integer in decimal system = 999

We go on dividing till we get a dividend < 2 and write remainders from last to first as shown below:

2	999	
2	499	1
2	249	1
2	124	1
2	62	0
2	31	0
2	15	1
2	7	1
2	3	1
	1	1

$$\text{Hence, } (999)_{10} = (1111100111)_2$$

Hence, option (c) is correct.

$$\begin{aligned} 85. (c) \text{ Consider } & \begin{vmatrix} \cos 15^\circ & \sin 15^\circ \\ \cos 45^\circ & \sin 45^\circ \end{vmatrix} \times \begin{vmatrix} \cos 45^\circ & \sin 15^\circ \\ \cos 45^\circ & \sin 15^\circ \end{vmatrix} \\ & = (\sin 45^\circ \cos 15^\circ - \cos 45^\circ \sin 15^\circ) \\ & \quad \times (\cos 45^\circ \sin 15^\circ - \sin 45^\circ \cos 15^\circ) \\ & = -\sin(45^\circ - 15^\circ) \times \sin(45^\circ - 15^\circ) \\ & \quad \{ \because \sin(A-B) = -\cos A \sin B + \sin A \cos B \} \\ & = -\sin(30^\circ) \times \sin(30^\circ) \\ & = -\frac{1}{2} \times \frac{1}{2} = -\frac{1}{4} \end{aligned}$$

Hence, option (c) is correct.

86. (c) We have $P(A_1) = \frac{1}{1+1} = \frac{1}{2}$, $P(A_2) = \frac{1}{3}$ and

$$P(A_3) = \frac{1}{4}$$

∴ Probability that at least one of these events occur is $P(A_1 \cup A_2 \cup A_3)$. Also, A_1, A_2, A_3 are independent events.

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_2 \cap A_3) - P(A_1 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$$

$$P(A_1 \cup A_2 \cup A_3) = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \left(\frac{1}{2} \times \frac{1}{3}\right) - \left(\frac{1}{2} \times \frac{1}{4}\right) - \left(\frac{1}{3} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}\right)$$

$$P(A_1 \cup A_2 \cup A_3) = \frac{3}{4}$$

Hence, option (c) is correct.

87. (d) Force, \vec{F} is given by $\vec{F} = \hat{i} + \hat{j} + \hat{k}$

$$\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k} \text{ and } \overrightarrow{OB} = -2\hat{i} + 3\hat{j} + \hat{k}$$

$$\therefore \vec{r} = \overrightarrow{AB} = (-2\hat{i} + 3\hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = -3\hat{i} + \hat{j} - 2\hat{k}$$

Moment \vec{M} about the point $\hat{i} + 2\hat{j} + 3\hat{k}$

$$\vec{M} = \vec{r} \times \vec{F} = (-3\hat{i} + \hat{j} - 2\hat{k}) \times (\hat{i} + \hat{j} + \hat{k})$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 1 & -2 \\ 1 & 1 & 1 \end{vmatrix} = \hat{i}(1+2) - \hat{j}(-3+2) + \hat{k}(-3-1) \\ = 3\hat{i} + \hat{j} - 4\hat{k}$$

Hence, option (d) is correct.

88. (d) Given rule is: Distance $s = 2 - 3t + 4t^3$

$$\Rightarrow \text{Velocity} = \frac{ds}{dt} = -3 + 12t^2$$

$$\Rightarrow \text{Acceleration} = \frac{d^2s}{dt^2} = 24t$$

Since, velocity is zero

$$\therefore \frac{ds}{dt} = 0 \Rightarrow -3 + 12t^2 = 0 \Rightarrow t = \sqrt{\frac{3}{12}} = \frac{1}{2}$$

Acceleration (when velocity is zero)

$$\Rightarrow \frac{d^2s}{dt^2} = 24t = 24 \times \frac{1}{2} = 12 \text{ unit}$$

Hence, option (d) is correct.

89. (b) Let $2^x = 3^y = 12^z = k$

Taking log on both sides, we get

$$x = \log_2 k, y = \log_3 k \text{ and } z = \log_{12} k$$

$$\therefore \frac{x+2y}{xy} = \frac{\log_2 k + 2\log_3 k}{\log_2 k \log_3 k} \\ = \frac{1}{\log_3 k} + \frac{2}{\log_2 k} \\ = \log_k 3 + 2\log_k 2 \\ = \log_k 3 + \log_k 4 \\ = \log_k 12 \\ = \frac{1}{\log_{12} k} = \frac{1}{z}$$

Hence, option (b) is correct.

90. (b) Given that $\sin 3A = 1$

$$\Rightarrow 3\sin A - 4\sin^3 A = 1$$

$$\Rightarrow 4\sin^3 A - 3\sin A + 1 = 0$$

$$\Rightarrow (\sin A + 1)(4\sin^2 A - 4\sin A + 1) = 0$$

$$\Rightarrow (\sin A + 1)(2\sin A - 1)^2 = 0$$

$$\Rightarrow \sin A = -1 \text{ or } \frac{1}{2}$$

Thus, $\sin A$ can take two distinct values.

Hence, option (b) is correct.

91. (b) Here $m_1 = 2 - \sqrt{3}$ and $m_2 = 2 + \sqrt{3}$

Obtuse angle between them is given by:

$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

$$= \tan^{-1} \left(\frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + (2 - \sqrt{3})(2 + \sqrt{3})} \right)$$

$$= \tan^{-1} \left(\frac{-2\sqrt{3}}{2} \right) = \tan^{-1}(-\sqrt{3}) = 120^\circ$$

Hence, option (b) is correct.

92. (c) The equation of curve is $y = -x^3 + 3x^2 + 2x - 27$

On differentiating w.r.t. x , we get

$$\frac{dy}{dx} = -3x^2 + 6x + 2$$

This represents slope of the curve at any point.

$$\text{Let } A = \frac{dy}{dx} = -3x^2 + 6x + 2$$

$$\Rightarrow \frac{dA}{dx} = -6x + 6 \text{ and}$$

$$\frac{d^2 A}{dx^2} = -6$$

Put $\frac{dA}{dx} = 0$ for maxima or minima

$$-6x + 6 = 0 \Rightarrow x = 1$$

$$\text{Now, } \left(\frac{d^2 A}{dx^2} \right)_{x=1} = -6 < 0$$

$\therefore A$ is maximum at $x = 1$

$$\therefore \text{Maximum slope of curve} = -3 + 6 + 2 = 5$$

Hence, option (c) is correct.

93. (b) We have $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$

$$\therefore |A| = -1 \text{ and } |B| = 1$$

$$A^{-1} = \frac{1}{|A|} \text{adj}A = \frac{1}{-1} \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}^T = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$

$$B^{-1} = \frac{1}{|B|} \text{adj}B = \frac{1}{1} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}^T = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\therefore B^{-1}A^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

Hence, option (b) is correct.

94. (c) R is defined over the set of non-negative integers,

$$x^2 + y^2 = 36$$

$$\Rightarrow y = \sqrt{36 - x^2} = \sqrt{(6-x)(6+x)}, x = 0 \text{ or } 6$$

For $x = 0 \Rightarrow y = 6$ and for $x = 6 \Rightarrow y = 0$

So, y is 6 or 0

$$\text{Thus, } R = \{(6, 0), (0, 6)\}$$

Hence, option (c) is correct.

95. (c) Given that $3 \tan^2 x = 1$

$$\Rightarrow \tan x = \pm \frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan x = \tan \left(\pm \frac{\pi}{6} \right)$$

$$\Rightarrow x = n\pi \pm \frac{\pi}{6}$$

Hence, option (c) is correct.

96. (a) We know that the angle between the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ is given by

$$\cos \theta = \left| \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

Given equation of planes are $px + 2y + 2z - 3 = 0$ and $2x - y + z + 2 = 0$

On comparing with standard equations, we get

$$a_1 = p, a_2 = 2, b_1 = 2, b_2 = -1, c_1 = 2, c_2 = 1$$

$$\text{Also, } \theta = \frac{\pi}{4} \text{ (given)}$$

$$\therefore \cos \frac{\pi}{4} = \left| \frac{p \times 2 + 2 \times (-1) + 2 \times 1}{\sqrt{p^2 + 4 + 4} \sqrt{4 + 1 + 1}} \right|$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{2p}{\sqrt{6} \sqrt{p^2 + 4 + 4}} \Rightarrow \frac{1}{2} = \frac{4p^2}{6(p^2 + 8)}$$

$$\Rightarrow \frac{3}{4} = \frac{p^2}{p^2 + 8} \Rightarrow 3p^2 + 24 = 4p^2 \Rightarrow p^2 = 24$$

Hence, option (a) is correct.

97. (b) Let the vector be $\vec{r} = xi + y\hat{j} + zk\hat{k}$. Since, \vec{r} and $\hat{i} + \hat{j}$ are perpendicular to each other.

$$\text{Hence, } \vec{r} \cdot (\hat{i} + \hat{j}) = 0 \Rightarrow x + y = 0 \quad \dots \text{(i)}$$

Also, \vec{r} and $\hat{j} + \hat{k}$ are perpendicular to each other. So,

$$\vec{r} \cdot (\hat{j} + \hat{k}) = 0 \Rightarrow y + z = 0 \quad \dots \text{(ii)}$$

$$\text{And } x^2 + y^2 + z^2 = 9 \quad \dots \text{(iii)}$$

$$\Rightarrow (-y)^2 + y^2 + (-y)^2 = 9$$

$$\Rightarrow 3y^2 = 9$$

$$\Rightarrow y = \pm\sqrt{3}$$

$$\therefore x = \mp\sqrt{3} \text{ and } z = \pm\sqrt{3} \quad [\text{from (i) and (ii)}]$$

$$\text{So, vector is } \sqrt{3}(\hat{i} - \hat{j} + \hat{k})$$

Hence, option (b) is correct.

98. (b) Let r be the radius of the balloon.

Balloon is like a sphere and volume of sphere $= \frac{4}{3}\pi r^3$

$$\therefore V = \frac{4}{3}\pi r^3$$

Differentiate both sides w.r.t. t , we get

$$\Rightarrow \frac{dV}{dt} = \frac{4}{3}\pi \cdot 3r^2 \frac{dr}{dt}$$

$$\Rightarrow 4 = \frac{4}{3}\pi \cdot 3(4)^2 \frac{dr}{dt} \quad \left(\because \frac{dV}{dt} = 4 \text{ cm}^3/\text{s} \right)$$

$$\Rightarrow \frac{dr}{dt} = \frac{1}{16\pi} \quad \dots \text{(i)}$$

Now, surface area of the balloon, $S = 4\pi r^2$

$$\therefore \frac{dS}{dt} = 4\pi \cdot 2r \frac{dr}{dt} = 4\pi \cdot 2(4) \times \frac{1}{16\pi} = 2 \text{ cm}^2/\text{s}$$

Hence, option (b) is correct.

99. (d) A relation is equivalent if it is reflexive, symmetric and transitive.

So, we check for the same, one-by-one.

$$x, y \in N \Rightarrow x > 0, y > 0, R = \{(x, y) : xy > 0, x, y \in N\}$$

(i) **Reflexive**

$$\because x, y \in N$$

$$\therefore x, x \in N \Rightarrow x^2 > 0$$

$\therefore R$ is reflexive.

(ii) **Symmetric**

$\because x, y \in N$ and $xy > 0 \Rightarrow yx > 0$

$\therefore R$ is also symmetric.

(iii) **Transitive**

$$\because x, y, z \in N$$

$$\therefore xy > 0, yz > 0 \Rightarrow xz > 0$$

$\therefore R$ is also transitive.

Conclusion: R is an equivalence relation.

Hence, option (d) is correct.

100. (a) Here α is the root of equation.

$$25\cos^2 \theta + 5\cos \theta - 12 = 0$$

$$\Rightarrow 25\cos^2 \alpha + 5\cos \alpha - 12 = 0$$

$$\Rightarrow 25\cos^2 \alpha + 20\cos \alpha - 15\cos \alpha - 12 = 0$$

$$\Rightarrow 5\cos \alpha(5\cos \alpha + 4) - 3(5\cos \alpha + 4) = 0$$

$$\Rightarrow (5\cos \alpha - 3)(5\cos \alpha + 4) = 0$$

$$\Rightarrow \cos \alpha = \frac{3}{5} \text{ or } \cos \alpha = -\frac{4}{5}$$

Here, $\frac{\pi}{2} < \alpha < \pi$

$$\therefore \cos \alpha = -\frac{4}{5}$$

(\because In 2nd quadrant, $\cos \alpha$ value is negative)

$$\text{Now, } \sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$$

$$\therefore \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3}{5} \times \frac{-5}{4} = \frac{-3}{4}$$

Hence, option (a) is correct.

101. (b) Since, $\sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha$

$$\therefore \sin 2\alpha = 2 \left(\frac{3}{5} \right) \left(-\frac{4}{5} \right)$$

$$= \frac{6}{5} \times \frac{-4}{5} = \frac{-24}{25}$$

Hence, option (b) is correct.

102. (d) The given matrix $A = \begin{bmatrix} 0 & -4+i \\ 4+i & 0 \end{bmatrix}$

Now, from the given options:

From option (a): For symmetric matrix, $A^T = A$

$$\text{So, } A^T = \begin{bmatrix} 0 & 4+i \\ -4+i & 0 \end{bmatrix} \neq A$$

\therefore Given matrix is not symmetric.

Therefore, option (a) is wrong.

From option (b): For skew-symmetric, $A^T = -A$

$$\text{So, } A^T = \begin{bmatrix} 0 & 4+i \\ -4+i & 0 \end{bmatrix} \neq -A$$

\therefore Given matrix is not skew-symmetric.

Therefore, option (b) is wrong.

From option (c): For Hermitian matrix, $A^T = \bar{A}$, where

\bar{A} is conjugate of matrix A .

$$\text{Now, } \bar{A} = \begin{bmatrix} 0 & -4-i \\ 4-i & 0 \end{bmatrix} \neq A^T$$

\therefore Given matrix is not Hermitian matrix.

Therefore, option (c) is wrong.

From option (d): For Skew-Hermitian matrix,

The diagonal elements of a skew-Hermitian matrix are pure imaginary or zero.

$$A = \begin{bmatrix} 0 & -4+i \\ 4+i & 0 \end{bmatrix}$$

Here, diagonal element indicates that the given matrix is skew-Hermitian matrix.

Hence, option (d) is correct.

103. (a) Since, $(\vec{a} + \lambda \vec{b})$ perpendicular to $(\vec{a} - \lambda \vec{b})$, their dot product is zero. So,

$$(\vec{a} + \lambda \vec{b}) \cdot (\vec{a} - \lambda \vec{b}) = 0$$

$$\Rightarrow |\vec{a}|^2 - \lambda^2 |\vec{b}|^2 - \lambda \vec{a} \cdot \vec{b} + \lambda \vec{b} \cdot \vec{a} = 0$$

$$\Rightarrow |\vec{a}|^2 - \lambda^2 |\vec{b}|^2 = 0 \quad [\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$$

$$\Rightarrow 9 - 16\lambda^2 = 0$$

$$\Rightarrow \lambda^2 = \frac{9}{16} \Rightarrow \lambda = \pm \frac{3}{4}$$

Hence, option (a) is correct.

104. (c) Given that $\frac{dx}{dt} = x+1 \Rightarrow \frac{dx}{x+1} = dt$

Integrating both sides, we get

$$\ln(x+1) = t + c$$

At $t = 0, x = 0$ (origin point)

$$\text{Then, } \ln(0+1) = 0 + c \Rightarrow c = 0$$

$$\therefore \ln(x+1) = t$$

$$\text{When } x = 24, t = \ln(24+1) = \ln(25) = 2 \ln 5$$

Hence, option (c) is correct.

105. (d) For **reflexive**:

$$aRa \Rightarrow a \text{ divides } a$$

$\therefore R$ is reflexive.

For **symmetric**:

$$aRb \Rightarrow a \text{ divides } b$$

$$bRa \Rightarrow b \text{ divides } a$$

which may not be true.

$\therefore R$ is not symmetric.

For **transitive**:

$$aRb \Rightarrow a \text{ divides } b \Rightarrow b = ka$$

$$bRc \Rightarrow b \text{ divides } c \Rightarrow c = lb$$

$$\text{Now, } c = lka$$

$$\Rightarrow a \text{ divides } c$$

$$\Rightarrow aRc$$

$$\Rightarrow aRb, bRc \Rightarrow cRa$$

$\Rightarrow R$ is transitive

Thus, R is only reflexive and transitive.

Hence, option (d) is correct.

106. (b) Bag I has 5 white + 3 black balls.

Bag II has 2 white + 4 black balls.

$$P(\text{Black})_{1\text{st bag}} = \frac{3}{8} \text{ and } P(\text{White})_{1\text{st bag}} = \frac{5}{8}$$

If one ball is drawn from bag I and placed in bag II, bag II will have 7 balls.

If black ball is drawn, then bag II contains 2 White + 5 Black = 7 balls.

$$P(\text{black ball from bag I and black ball from bag II}) \\ = \frac{3}{8} \times \frac{5}{7} = \frac{15}{56}$$

If ball is white then bag II has 3 white + 4 black balls

$$P(\text{white ball from bag I and black ball from bag II}) \\ = \frac{5}{8} \times \frac{4}{7} = \frac{20}{56}$$

$$\Rightarrow P(\text{black ball})_{\text{bag II}} = \frac{15}{56} + \frac{20}{56} = \frac{35}{56}$$

Hence, option (b) is correct.

107. (b) Line of regression of y on x is:

$$y - \bar{y} = b_{yx} (x - \bar{x})$$

$$\bar{y} = \frac{\sum y}{n}; \bar{x} = \frac{\sum x}{n} \Rightarrow \bar{y} = \frac{220}{10} = 22; \bar{x} = \frac{130}{10} = 13$$

$$b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x}$$

$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2][n \sum y^2 - (\sum y)^2]}} \\ = \frac{10(3467) - (130)(220)}{\sqrt{[10 \times 2288 - (130)^2][10 \times 5506 - (220)^2]}} \\ = 0.962$$

$$\sigma_y = \sqrt{\frac{\sum y^2}{n} - \left(\frac{\sum y}{n}\right)^2} \Rightarrow \sigma_y = 8.2; \sigma_x = 7.73$$

$$\Rightarrow b_{yx} = 0.962 \times \frac{8.2}{7.73} = 1.02$$

∴ Line of regression of y on x is:

$$y - 22 = 1.02(x - 13)$$

$$\Rightarrow y = 1.02x + 8.74$$

Hence, option (b) is correct.

108. (c) Mean of 100 items = $\bar{x}_{100} = 50$

Mean of 150 items = $\bar{x}_{150} = 40$

Standard deviation of 100 items = $\sigma_{100} = 5$

Standard deviation of 150 items = $\sigma_{150} = 6$

$$\therefore \bar{x}_{250} = \frac{n_1 \bar{x}_{100} + n_2 \bar{x}_{150}}{n_1 + n_2} = \frac{(100 \times 50) + (150 \times 40)}{100 + 150} \\ = \frac{11000}{250} = 44$$

$$\text{Now, } d_1 = 50 - 44 = 6 \quad d_1^2 = 36$$

$$\text{And, } d_2 = 40 - 44 = -4 \quad d_2^2 = 16$$

$$\therefore \sigma_{250} = \sqrt{\frac{n_1 (\sigma_{100}^2 + d_1^2) + n_2 (\sigma_{150}^2 + d_2^2)}{n_1 + n_2}} \\ = \frac{\sqrt{390}}{5} = \frac{37.28}{5} \approx 7.5$$

Hence, option (c) is correct.

109. (d) Given $np = 4$ and $npq = \frac{4}{3}$

$$\therefore 4q = \frac{4}{3} \Rightarrow q = \frac{1}{3}$$

$$\therefore p = 1 - \frac{1}{3} = \frac{2}{3} \Rightarrow n = \frac{4 \times 3}{2} = 6$$

$$\text{Now, } P(X \geq 5) = {}^6C_5 p^5 q^1 + {}^6C_6 p^6 q^0$$

$$= {}^6C_5 \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right) + {}^6C_6 \left(\frac{2}{3}\right)^6$$

$$= \frac{6 \times 32}{3^6} + \frac{64}{3^6} = \frac{256}{3^6} = \frac{2^8}{3^6}$$

Hence, option (d) is correct.

110. (c) Given that $E(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, therefore,

$$E(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \text{ and } E(\beta) = \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix}$$

$$\text{Now, } E(\alpha)E(\beta) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{bmatrix}$$

$$\begin{aligned}
 &= \begin{bmatrix} \cos \alpha \cdot \cos \beta & \cos \alpha \cdot \sin \beta \\ -\sin \alpha \cdot \sin \beta & +\sin \alpha \cdot \cos \beta \\ -\sin \alpha \cdot \cos \beta & -\sin \alpha \cdot \sin \beta \\ -\cos \alpha \cdot \sin \beta & +\cos \alpha \cdot \cos \beta \end{bmatrix} \\
 &= \begin{bmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} \\
 &= E(\alpha + \beta)
 \end{aligned}$$

Hence, option (c) is correct.

111. (d) Given that $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} + 2\hat{k}$

$$\therefore \vec{a} + \vec{b} = 4\hat{i} - \hat{j} + 5\hat{k}$$

$$\text{Then, } \vec{c} = \lambda(\vec{a} + \vec{b}) = \lambda(4\hat{i} - \hat{j} + 5\hat{k})$$

$$\Rightarrow l = \sqrt{16\lambda^2 + \lambda^2 + 25\lambda^2}$$

$$\Rightarrow l = \sqrt{42\lambda^2}$$

$$\Rightarrow \lambda = \frac{l}{\sqrt{42}}$$

$$\therefore \vec{c} = \frac{l}{\sqrt{42}}(4\hat{i} - \hat{j} + 5\hat{k}) = \frac{1}{\sqrt{42}}(4, -1, 5)$$

Hence, option (d) is correct.

112. (a) The given lines are $\frac{x-2}{1} = \frac{y-(-1)}{-2} = \frac{z-(-2)}{1}$

$$\text{and } \frac{x-1}{1} = \frac{y-\left(-\frac{3}{2}\right)}{\frac{3}{2}} = \frac{z-(-5)}{2}$$

Dr's of 1st lines are $a_1 = 1, b_1 = -2, c_1 = 1$

Dr's of 2nd lines are $a_2 = 2, b_2 = 3, c_2 = 4$

Let θ be the angle b/w two lines given by

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$

$$\Rightarrow \cos \theta = \left| \frac{1 \cdot 2 + (-2) \cdot 3 + 1 \cdot 4}{\sqrt{1+4+1} \sqrt{4+9+16}} \right| = 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

Hence, option (a) is correct.

113. (c) By Bayes' Theorem, we have

$$\text{Required probability} = P(A_1/B)$$

$$\begin{aligned}
 &= \frac{P(A_1)P(B/A_1)}{P(A_1)P(B/A_1) + P(A_2)P(B/A_2) + P(A_3)P(B/A_3)} \\
 &= \frac{0.4 \times 0.25}{0.4 \times 0.25 + 0.4 \times 0.4 + 0.2 \times 0.125} \\
 &= \frac{0.1}{0.285} = \frac{20}{57}
 \end{aligned}$$

Hence, option (c) is correct.

114. (b) We know that $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 \times |\vec{b}|^2$

$$\therefore 64 + |\vec{a} \cdot \vec{b}|^2 = 4 \times 25$$

$$\Rightarrow |\vec{a} \cdot \vec{b}|^2 = 100 - 64 = 36$$

$$\Rightarrow \vec{a} \cdot \vec{b} = 6$$

Hence, option (b) is correct.

115. (b) A leap year has 366 days in which 2 days may be any one of the following pairs:

(Sunday, Monday), (Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday), (Thursday, Friday), (Friday, Saturday) and (Saturday, Sunday)

$$\therefore \text{Required probability} = \frac{2}{7} + \frac{2}{7} - \frac{1}{7} = \frac{3}{7}$$

Hence, option (b) is correct.

116. (d) $r = 0.6$, covariance = 27, $\sigma_{(y)}^2 = 25 \Rightarrow \sigma(y) = 5$

$$\text{We know } r = \frac{\text{covariance}(x, y)}{\sigma(x) \cdot \sigma(y)}$$

$$\Rightarrow \sigma(x) = \frac{\text{covariance}(x, y)}{r \cdot \sigma(y)} = \frac{27}{0.6 \times 5} = 9$$

$$\Rightarrow \sigma^2(x) = 81$$

Hence, option (d) is correct.

117. (c) Possible samples are as follows:

$$\{HHH, HTH, HHT, THH, TTH, THT, HTT, TTT\}$$

Let A be the event of getting one head.

Let B be the event of getting no head.

Favourable outcome for $A = \{TTH, THT, HTT\}$

Favourable outcome for $B = \{TTT\}$

Total no. of outcomes = 8

$$\therefore P(A) = \frac{3}{8}, P(B) = \frac{1}{8}$$

$$\therefore \text{Required probability} = P(A) + P(B)$$

$$= \frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$$

Hence, option (c) is correct.

118. (a) Since, the AM of numbers x_1, x_2, \dots, x_n is μ

$$\therefore n\mu = x_1 + x_2 + \dots + x_n$$

Sum of new numbers

$$= (x_1 + 1) + (x_2 + 2) + \dots + (x_n + n)$$

$$= (x_1 + x_2 + \dots + x_n) + (1 + 2 + 3 + \dots + n)$$

$$= n\mu + \frac{n(n+1)}{2}$$

$$\therefore \text{AM} = \mu + \frac{(n+1)}{2}$$

Hence, option (a) is correct.

119. (d) The standard deviation of n observations x_1, x_2, \dots, x_n is 6 and of y_1, y_2, \dots, y_n is 8.

Then, the standard deviation of n observations $x_1 - y_1, x_2 - y_2, \dots, x_n - y_n$ is $8 - 6 = 2$

Hence, option (d) is correct.

120. (d) Given regression lines are $6x + y = 30$ and $3x + 2y = 25$

Point of intersection of both lines is

$$(\bar{x}, \bar{y}) = \left(\frac{35}{9}, \frac{20}{3} \right)$$

$$\text{From the given line } 6x + y = 30 \Rightarrow x = -\frac{1}{6}y + 5$$

$$\text{And, } 3x + 2y = 25 \Rightarrow y = -\frac{3}{2}x + \frac{25}{2}$$

$$\therefore r^2 = \left(-\frac{1}{6} \right) \left(-\frac{3}{2} \right) \Rightarrow r = \pm \frac{1}{2}$$

\therefore sign of \bar{x}, \bar{y} and r is same.

$$\therefore r = \frac{1}{2}$$

Hence, option (d) is correct.