

HINTS & SOLUTION

1. (d) Since, α and β are the roots of the equation $x^2 - 2x - 1 = 0$, then
 sum of roots = $\alpha + \beta = 2$ and
 product of roots = $\alpha\beta = -1$
 Since, $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$
 $\Rightarrow 4 = \alpha^2 + \beta^2 - 2$
 $\Rightarrow \alpha^2 + \beta^2 = 6$
 Now, $\alpha^2\beta^{-2} + \alpha^{-2}\beta^2 = \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{(\alpha\beta)^2}$
 $\Rightarrow (\alpha^2 + \beta^2)^2 = 6^2$
 $\Rightarrow \alpha^4 + \beta^4 + 2\alpha^2\beta^2 = 36$
 $\Rightarrow \alpha^4 + \beta^4 + 2(-1)^2 = 36$
 $\Rightarrow \alpha^4 + \beta^4 = 34$
 $\Rightarrow \frac{\alpha^4 + \beta^4}{(\alpha\beta)^2} = \frac{34}{(-1)^2} = 34$
 Hence, option (d) is correct.

2. (c) If $x+1$, $4x+1$ and $8x+1$ are in GP, then
 $(4x+1)^2 = (x+1)(8x+1)$
 $\Rightarrow 16x^2 + 8x + 1 = 8x^2 + x + 8x + 1$
 $\Rightarrow 8x^2 - x = 0$
 $\Rightarrow x(8x - 1) = 0$
 $\Rightarrow x = 0, \frac{1}{8}$ [$\frac{1}{8}$ is non trivial value]
 Hence, option (c) is correct.

3. (d) Given $3^{(x-1)} + 3^{(x+1)} = 30$
 $\Rightarrow \frac{3^x}{3} + 3 \cdot 3^x = 30$ (i)
 Multiplying both sides by 3 in equation (i)
 $\Rightarrow 3^x + 3^2 \cdot 3^x = 90 \Rightarrow 3^x + 3^{x+2} = 90$
 Hence, option (d) is correct.

4. (d) Since, $p = \tan \alpha + \tan \beta$ and $q = \cot \alpha + \cot \beta$
 $\Rightarrow q = \frac{1}{\tan \alpha} + \frac{1}{\tan \beta} = \frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta}$
 $\Rightarrow q = \frac{p}{\tan \alpha \tan \beta}$ $\{ \because p = \tan \alpha + \tan \beta \}$
 $\Rightarrow \frac{1}{q} = \frac{\tan \alpha \tan \beta}{p}$
 Hence, $\frac{1}{p} - \frac{1}{q} = \frac{1}{p} - \frac{\tan \alpha \tan \beta}{p}$
 $\Rightarrow \left(\frac{1}{p} - \frac{1}{q} \right) = \frac{1 - \tan \alpha \tan \beta}{p}$
 $\Rightarrow \left(\frac{1}{p} - \frac{1}{q} \right) = \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$
 $\Rightarrow \left(\frac{1}{p} - \frac{1}{q} \right) = \frac{1}{\tan(\alpha + \beta)} = \cot(\alpha + \beta)$
 Hence, option (d) is correct.

5. (b) Here, $\sin \alpha$ and $\cos \alpha$ are the roots of the equation
 $px^2 + qx + r = 0$
 $\therefore \sin \alpha + \cos \alpha = -\frac{q}{p}$ (i)
 and $\sin \alpha \cos \alpha = \frac{r}{p}$ (ii)
 From equation (i), we have
 $(\sin \alpha + \cos \alpha)^2 = \frac{q^2}{p^2}$
 $\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{q^2}{p^2}$
 $\Rightarrow 1 + 2 \left(\frac{r}{p} \right) = \frac{q^2}{p^2}$
 $\Rightarrow p^2 + 2pr = q^2$
 $\Rightarrow p^2 - q^2 + 2pr = 0$
 Hence, option (b) is correct.

6. (c) Length of the latus rectum of a hyperbola is $\frac{2b^2}{a}$

where a is the half of the distance between two vertex of the hyperbola.

$$\text{Latus rectum} = \frac{2b^2}{a} = \frac{10}{3} \Rightarrow b^2 = \frac{5a}{3} \quad \dots\text{(i)}$$

In case of hyperbola,

$$b^2 = a^2(e^2 - 1) \quad \dots\text{(ii)}$$

Putting the value of b^2 from equation (i) and $e = \frac{\sqrt{13}}{3}$

in equation (ii), we get

$$\begin{aligned} \frac{5a}{3} &= a^2 \left(\frac{13}{9} - 1 \right) \Rightarrow \frac{5a}{3} = \frac{4a^2}{9} \\ \Rightarrow 4a^2 - 15a &= 0 \text{ or } a(4 - 15) = 0 \end{aligned}$$

$$\text{Since, } a \neq 0, \text{ so } a = \frac{15}{4}$$

$$\text{Length of transverse axis} = 2a = 2 \times \frac{15}{4} = \frac{15}{2}$$

Hence, option (c) is correct.

7. (b) Let total number of teams participated in a championship be n .

Since, every team played one match with each other team.

$$\therefore {}^nC_2 = 153 \Rightarrow \frac{n!}{2!(n-2)!} = 153$$

$$\Rightarrow \frac{n(n-1)(n-2)!}{2!(n-2)!} = 153 \Rightarrow \frac{n(n-1)}{2} = 153$$

$$\Rightarrow n(n-1) = 306$$

$$\Rightarrow n^2 - n - 306 = 0$$

$$\Rightarrow (n-18)(n+17) = 0$$

$$\Rightarrow n = 18, -17$$

Since, n cannot be negative. So $n = 18$

Hence, option (b) is correct.

8. (a) From the given options, we have

$$(a) 111101 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$= 32 + 16 + 8 + 4 + 1$$

= 61 (which is a prime number)

$$(b) 111010 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$= 32 + 16 + 8 + 2$$

= 58 (which is not a prime number)

$$(c) 111111 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 32 + 16 + 8 + 4 + 2 + 1$$

= 63 (which is not a prime number)

$$(d) 100011 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= 32 + 2 + 1$$

= 35 (which is not a prime number)

Thus, option (a) is correct.

9. (c) Since, the points $A(1,2)$, $B(2,4)$ and $C(3,a)$ are collinear.

$$\Rightarrow \begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 3 & a & 1 \end{vmatrix} = 0$$

Expanding the determinant, we have

$$\Rightarrow 1 \begin{vmatrix} 4 & 1 \\ a & 1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 \\ 3 & a \end{vmatrix} = 0$$

$$\Rightarrow (4-a) - 2(2-3) + 1(2a-12) = 0$$

$$\Rightarrow 4-a+2+2a-12=0$$

$$\Rightarrow a-6=0$$

$$\Rightarrow a=6$$

Thus, the coordinates of C are $(3,6)$

$$\text{Thus, } BC = \sqrt{(3-2)^2 + (6-4)^2} = \sqrt{1+4} = \sqrt{5} \text{ units}$$

Hence, option (c) is correct.

10. (d) The given series $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots$ can be written as

$$1 + \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^3 + \dots$$

This is a GP with first term 1 and common ratio $-\frac{1}{2}$

So, the sum of the series is

$$= \frac{1}{1 - \left(-\frac{1}{2}\right)} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

Hence, option (d) is correct.

11. (c) No. of digits to be filled at one's place = 3

No. of digits to be filled at 10's place = 5

No. of digits to be filled at 100's place = 4

∴ Total no. of digits formed = $3 \times 5 \times 4 = 60$

If zero is at 100's place, then no. of digits to be filled at one's place = 2

And no. of digits formed with zero at 10's place = 4

∴ No. of digits formed with zero at 100's place = $1 \times 2 \times 4 = 8$

∴ Required no. of digits formed $60 - 8 = 52$

Hence, option (c) is correct.

12. (c) From the given data, we have

$$n(U) = 700, n(A) = 200, n(B) = 300, n(A \cap B) = 100$$

We know that,

$$\begin{aligned} n(A \cup B) &= n(A) + n(B) - n(A \cap B) \\ &= 200 + 300 - 100 \\ &= 400 \end{aligned}$$

$$\begin{aligned} \text{Now, } n(A' \cap B') &= n(A \cup B)' = n(U) - n(A \cup B) \\ &= 700 - 400 = 300 \end{aligned}$$

Hence, option (c) is correct.

13. (b) Given that $y = x + e^x$

Differentiate both sides w.r.t. x

$$\frac{dy}{dx} = 1 + e^x \Rightarrow \frac{dx}{dy} = \frac{1}{1 + e^x}$$

Again, differentiate w.r.t. y

$$\begin{aligned} \frac{d^2x}{dy^2} &= \frac{-(1)(e^x)}{(1 + e^x)^2} \cdot \frac{dx}{dy} = -\frac{e^x}{(1 + e^x)^2} \cdot \frac{1}{1 + e^x} \\ &= -\frac{e^x}{(1 + e^x)^3} \end{aligned}$$

Hence, option (b) is correct.

14. (c) Given that $f(x) = \log\left(\frac{1+x}{1-x}\right)$

Therefore,

$$\begin{aligned} f\left(\frac{2x}{1+x^2}\right) &= \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right) = \log\left(\frac{1+x^2+2x}{1+x^2-2x}\right) \\ &= \log\left(\frac{(1+x)^2}{(1-x)^2}\right) = \log\left(\frac{1+x}{1-x}\right)^2 \\ &= 2\log\left(\frac{1+x}{1-x}\right) = 2f(x) \end{aligned}$$

Hence, option (c) is correct.

15. (c) We know from the Sine law that

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\Rightarrow \frac{2b}{\sin 3B} = \frac{b}{\sin B}$$

$$\Rightarrow 2 \sin B = \sin 3B$$

$$\Rightarrow 2 \sin B = 3 \sin B - 4 \sin^3 B$$

$$\Rightarrow \sin B - 4 \sin^3 B = 0$$

$$\Rightarrow \sin B(1 - 4 \sin^2 B) = 0$$

$$\Rightarrow \sin B = 0 \text{ or } 1 - 4 \sin^2 B = 0 \Rightarrow B = 0 \text{ or } B = 30^\circ$$

$$\Rightarrow B = 30^\circ \text{ and } A = 3 \times 30^\circ = 90^\circ$$

$$\Rightarrow B = 0 \text{ is not possible, so } B = 30^\circ \text{ and } A = 90^\circ$$

∴ The triangle is right angled triangle.

Hence, option (c) is correct.

16. (b) Let the first instalment be Rs. x and difference of consecutive instalments be Rs. d

$$\Rightarrow \frac{30}{2}(2x + 29d) = \frac{3600 \times 2}{3}$$

(∴ 1/3rd amount is unpaid, 2/3rd amount is paid)

$$\Rightarrow 2x + 29d = \frac{2400}{15}$$

$$\Rightarrow 2x + 29d = 160 \quad \dots \text{(i)}$$

Since, total amount was 3600 and it was to be paid in 40 instalments

$$\Rightarrow \frac{40}{2}(2x+39d) = 3600$$

$$\Rightarrow 2x+39d = 180 \quad \dots \text{(ii)}$$

On solving equations (i) and (ii), we get

$$x = 51 \text{ and } d = 2$$

∴ First instalment = Rs. 51

Hence, option (b) is correct.

17. (a) Let α and β are the roots of the given equation.

$$\therefore \alpha + \beta = \frac{-(3p+1)}{3}$$

$$\text{and } \alpha\beta = \frac{-(p+5)}{3}$$

$$\text{Now, } \frac{-(3p+1)}{3} = \frac{-(p+5)}{3}$$

$$\Rightarrow 3p+1 = p+5$$

$$\Rightarrow 2p = 4$$

$$\Rightarrow p = 2$$

Hence, option (a) is correct.

18. (d) Since, A and B are complementary angles, then $A+B=90^\circ$.

Now, we know that

$$\begin{aligned} \cos A \cos B &= \cos A \cos(90^\circ - A) \\ &= \cos A \sin A = \frac{1}{2} \sin 2A \end{aligned}$$

Since, $-1 \leq \sin 2A \leq 1$

$$\text{Hence, } -\frac{1}{2} \leq \frac{1}{2} \sin 2A \leq \frac{1}{2}$$

Thus, the greatest and least values of $\cos A \cos B$ are

$$\frac{1}{2} \text{ and } -\frac{1}{2}.$$

Hence, option (d) is correct.

19. (c) The given binary numbers are

$$\begin{aligned} 10001100 &= 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 \\ &\quad + 0 \times 2^1 + 0 \times 2^0 \\ &= 128 + 8 + 4 \\ &= 140 \text{ (decimal numbers)} \end{aligned}$$

And,

$$\begin{aligned} 1101101 &= 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 \\ &\quad + 1 \times 2^0 \\ &= 64 + 32 + 8 + 4 + 1 \\ &= 109 \end{aligned}$$

∴ Their difference = $140 - 109 = 31$

Hence, option (c) is correct.

20. (b) Equation of the given conic is an equation of ellipse

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} \quad (x \geq 0)$$

$$\Rightarrow A^2 = a^2 + \lambda^2 \text{ and } B^2 = b^2 + \lambda^2$$

$$\begin{aligned} \text{Eccentricity, } e &= \sqrt{1 - \frac{B^2}{A^2}} = \sqrt{1 - \frac{b^2 + \lambda}{a^2 + \lambda}} \\ &= \sqrt{\frac{a^2 + \lambda - b^2 - \lambda}{a^2 + \lambda}} = \sqrt{\frac{a^2 - b^2}{a^2 + \lambda}} \end{aligned}$$

Since, λ is in denominator, so when λ increases, the eccentricity decreases.

Hence, option (b) is correct.

21. (a) Let $I = \int \sqrt{x} e^{\sqrt{x}} dx$

$$\text{Put } \sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} dx = dt \Rightarrow dx = 2tdt$$

$$\therefore I = \int t e^t \cdot 2tdt = 2 \int t^2 e^t dt$$

By parts, let first function is t^2 and second function is e^t . Then,

$$\begin{aligned} I &= 2 \left[t^2 e^t - \int 2te^t dt \right] = 2 \left[t^2 e^t - 2 \left\{ te^t - \int e^t dt \right\} \right] \\ &= 2 \left[t^2 e^t - 2te^t + 2e^t \right] + c \end{aligned}$$

where c is constant of integration.

Since, $t = \sqrt{x}$, so we have

$$I = 2 \left[xe^{\sqrt{x}} - 2\sqrt{x} e^{\sqrt{x}} + 2e^{\sqrt{x}} \right] + c = 2e^{\sqrt{x}} (x - 2\sqrt{x} + 2) + c$$

Hence, option (a) is correct.

22. (b) The given expansion is $\left(x^2 + \frac{2}{x} \right)^{15}$

$$\begin{aligned}\therefore T_{r+1} &= {}^{15}C_r \left(x^2\right)^{15-r} \left(\frac{2}{x}\right)^r \\ &= {}^{15}C_r x^{30-2r} \cdot 2^r x^{-r} \\ &= {}^{15}C_r x^{30-3r} \cdot 2^r\end{aligned}$$

Now, above term will be independent of x when $30-3r=0 \Rightarrow r=10$

∴ Term independent of $x = {}^{15}C_{10} 2^{10}$

Now, coefficient of x^{15}

When $30-3r=15 \Rightarrow r=5$

∴ Required coefficient = ${}^{15}C_5 2^5$

Thus, required ratio = $\frac{{}^{15}C_5 2^5}{{}^{15}C_{10} 2^{10}}$

$$\begin{aligned}&= \frac{15!}{5!(10!)} = \frac{1}{2^5} = \frac{1}{32} \\ &= \frac{15!}{15! \times 2^5} = \frac{1}{10!(5!)}\end{aligned}$$

Hence, option (b) is correct.

$$23. (d) \text{ The number of diagonals} = \frac{n(n-3)}{2}$$

where n is the number of sides of polygon.

$$\begin{aligned}\therefore 20 &= \frac{n(n-3)}{2} \\ \Rightarrow 40 &= n^2 - 3n \\ \Rightarrow n^2 - 3n - 40 &= 0 \\ \Rightarrow n^2 - 8n + 5n - 40 &= 0 \\ \Rightarrow (n-8)(n+5) &= 0 \\ \Rightarrow n-8 &= 0 \text{ or } n+5 = 0\end{aligned}$$

Since, the number of diagonals cannot be negative.

$$\Rightarrow n=8$$

Hence, option (d) is correct.

$$24. (a) \text{ Given that the line is } ax \cos \phi + by \sin \phi - ab = 0.$$

Let d_1 be the perpendicular distance from $(\sqrt{b^2-a^2}, 0)$ to the line $ax \cos \phi + by \sin \phi - ab = 0$ and

d_2 from $(-\sqrt{b^2-a^2}, 0)$ to the line $ax \cos \phi + by \sin \phi - ab = 0$.

At point $(\sqrt{b^2-a^2}, 0)$

$$d_1 = \frac{a \sqrt{b^2-a^2} \cos \phi - ab}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}}$$

At point $(-\sqrt{b^2-a^2}, 0)$

$$d_2 = \frac{-a \sqrt{b^2-a^2} \cos \phi - ab}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}}$$

$$\begin{aligned}\therefore d_1 d_2 &= -\frac{[a^2(b^2-a^2) \cos^2 \phi - a^2 b^2]}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}} \\ &= -\frac{[a^2(-b^2 \sin^2 \phi - a^2 \cos^2 \phi)]}{\sqrt{a^2 \cos^2 \phi + b^2 \sin^2 \phi}} = a^2\end{aligned}$$

Hence, option (a) is correct.

$$25. (b) \text{ Let } I = \int_0^1 x(1-x)^n dx$$

$$\text{Put } 1-x=t \Rightarrow dx = -dt$$

$$\text{when } x=0 \text{ then } t=1$$

$$\text{when } x=1 \text{ then } t=0$$

$$\begin{aligned}\therefore I &= -\int_1^0 (1-t)t^n dx = \int_0^1 (t^n - t^{n-1}) dx \\ &= \left[\frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2} \right]_0^1 \\ &= \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}\end{aligned}$$

Hence, option (b) is correct.

$$26. (c) \text{ Let } P(15, n-1) : P(16, n-2) = 3 : 4$$

$$\Rightarrow \frac{{}^{15}P_{n-1}}{{}^{16}P_{n-2}} = \frac{3}{4}$$

$$\Rightarrow \frac{15!}{(15-n+1)!} \times \frac{(16-n+2)!}{16!} = \frac{3}{4}$$

$$\Rightarrow \frac{15!}{(16-n)!} \times \frac{(18-n)!}{16!} = \frac{3}{4}$$

$$\begin{aligned}
 &\Rightarrow \frac{(18-n)!}{16(16-n)!} = \frac{3}{4} \\
 &\Rightarrow \frac{(18-n)(17-n)(16-n)!}{16(16-n)!} = \frac{3}{4} \\
 &\Rightarrow (18-n)(17-n) = 12 \\
 &\Rightarrow 306 - 17n - 18n + n^2 = 12 \\
 &\Rightarrow n^2 - 35n + 294 = 0 \\
 &\Rightarrow (n-14)(n-21) = 0 \\
 &\Rightarrow n = 14 \quad (\because n \neq 21)
 \end{aligned}$$

Hence, option (c) is correct.

$$\begin{aligned}
 27. (a) \text{ We have } \sqrt{i} &= \sqrt{\frac{2i}{2}} = \sqrt{\frac{1+2i-1}{2}} \\
 &= \sqrt{\frac{1+2i+i^2}{2}} = \sqrt{\frac{(1+i)^2}{2}} = \frac{1+i}{\sqrt{2}} \\
 \text{And, } \sqrt{-i} &= \sqrt{-\frac{2i}{2}} = \sqrt{\frac{1-2i-1}{2}} \\
 &= \sqrt{\frac{1-2i+i^2}{2}} = \sqrt{\frac{(1-i)^2}{2}} = \frac{1-i}{\sqrt{2}}
 \end{aligned}$$

Therefore, we have

$$\sqrt{i} + \sqrt{-i} = \frac{1+i}{\sqrt{2}} + \frac{1-i}{\sqrt{2}} = \frac{1+i+1-i}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

Hence, option (a) is correct.

28. (c) Let the geometric progression be a, ar, ar^2, ar^3, \dots with common ratio r and the first term a .

According to the question, we have

$$a + ar = 8 \Rightarrow a(1+r) = 8 \quad \dots (i)$$

And $a + ar + ar^2 + ar^3 = 80$

$$\Rightarrow a(1+r) + ar^2(1+r) = 80$$

$$\Rightarrow a(1+r)(1+r^2) = 80$$

$$\Rightarrow 8(1+r^2) = 80 \quad \{ \text{from (i)} \}$$

$$\Rightarrow 1+r^2 = 10$$

$$\Rightarrow r^2 = 10 - 1 = 9$$

$$\Rightarrow r = 3 \quad (\because r > 0)$$

From equation (i), we have

$$a(1+3) = 8 \Rightarrow a = 2$$

Now, 6th term = $ar^5 = 2(3)^5 = 2 \times 243 = 486$

Hence, option (c) is correct.

29. (c) Given that $(x+y)(dx-dy) = dx + dy$

Dividing by dx on both the sides

$$(x+y) \left(1 - \frac{dy}{dx} \right) = 1 + \frac{dy}{dx}$$

Putting $x+y = v$

$$1 + \frac{dy}{dx} = \frac{dv}{dx} \text{ and } \frac{dy}{dx} = \frac{dv}{dx} - 1$$

The equation changes to

$$v \left\{ 1 - \left(\frac{dy}{dx} - 1 \right) \right\} = \frac{dv}{dx}$$

$$v \left(2 - \frac{dy}{dx} \right) = \frac{dv}{dx}$$

$$2v - v \frac{dy}{dx} = \frac{dv}{dx}$$

$$2v = (1+v) \frac{dv}{dx}$$

$$\Rightarrow \left(\frac{1+v}{v} \right) dv = 2dx$$

$$\Rightarrow \left(\frac{1}{v} + 1 \right) dv = 2dx$$

Integrate on both the sides, we have

$$\int \frac{dv}{v} + \int dv = 2 \int dx + c$$

$$\ln v + v = 2x + c$$

Putting $v = x+y$

$$\ln(x+y) + (x+y) = 2x + c$$

$$\ln(x+y) + y - x = c$$

$$y - x + \ln(x+y) = c$$

Hence, option (c) is correct.

30. (a) Consider $\cos B = \frac{\sin A}{2 \sin C}$

$$\Rightarrow \frac{c^2 + a^2 - b^2}{2ac} = \frac{a}{2c} \quad \left(\because \frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow \frac{\sin A}{\sin C} = \frac{a}{c} \right)$$

$$\Rightarrow c^2 + a^2 - b^2 = a^2$$

$$\Rightarrow c^2 - b^2 = 0$$

$$\Rightarrow c = b$$

Thus, ΔABC is an isosceles triangle.

Hence option (a) is correct.

31. (d) Since $3 \in A$ but $(3, 3) \notin R$

So, it is not reflexive

and, $(3, 4) \in R$ and $(4, 3) \in R$ but $(3, 3) \notin R$

So, it is not transitive.

Thus, $(4, 3) \in R$ is neither reflexive nor transitive

Hence, option (d) is correct.

32. (b) Consider the integral $\int \sin x \log(\tan x) dx$

$$= -\cos x \log \tan x - \int (-\cos x) \frac{1}{\tan x} \cdot \sec^2 x dx$$

$$= -\cos x \log \tan x + \int \frac{1}{\sin x} dx$$

$$= -\cos x \log \tan x + \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2}} dx$$

$$\text{Let } t = \tan \frac{x}{2} \Rightarrow \frac{dx}{dt} = \frac{2}{1+t^2} \Rightarrow dx = \frac{2}{1+t^2} \cdot dt$$

$$\text{So, } -\cos x \log \tan x + \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2}} dx$$

$$= -\cos x \log \tan x + \int \frac{1+t^2}{2t} \cdot \frac{2}{1+t^2} dt$$

$$= -\cos x \log \tan x + \int \frac{1}{t} dt$$

$$= -\cos x \log \tan x + \log(t) + c$$

$$= -\cos x \log \tan x + \log \tan\left(\frac{x}{2}\right) + c$$

Hence, option (b) is correct.

$$\begin{aligned} 33. (d) \text{ We have } \cos ec\left(\frac{13\pi}{12}\right) &= \cos ec\left(\pi + \frac{\pi}{12}\right) \\ &= -\cos ec\left(\frac{\pi}{12}\right) = -\cos ec 15^\circ \\ &= -\sqrt{1 + \cot^2 15^\circ} \\ &= -\sqrt{1 + (2 + \sqrt{3})^2} \quad [\because \cot 15^\circ = 2 + \sqrt{3}] \\ &= -\sqrt{1 + 4 + 3 + 4\sqrt{3}} \\ &= -\sqrt{8 + 4\sqrt{3}} = -\sqrt{6 + 2 + 2\sqrt{12}} \\ &= -\sqrt{(\sqrt{6})^2 + (\sqrt{2})^2 + 2\sqrt{6}\sqrt{2}} \\ &= -\sqrt{(\sqrt{6} + \sqrt{2})^2} \\ &= -\sqrt{6} - \sqrt{2} \end{aligned}$$

Hence, option (d) is correct.

34. (b) A line passes through $(2, 2)$ and is perpendicular to the line $3x + y = 3$.

Slope of the line $3x + y = 3$ is -3

Slope of the line which passes through $(2, 2)$ is $\frac{1}{3}$.

\therefore Equation of line passes through $(2, 2)$ and having slope $\frac{1}{3}$ is

$$(y - 2) = \frac{1}{3}(x - 2)$$

$$\Rightarrow 3y - 6 = x - 2$$

$$\Rightarrow x + 3y + 4 = 0$$

In order to find the y -intercept of the line, put $x = 0$

$$\therefore -3y = -4 \Rightarrow y = \frac{4}{3}$$

Hence, option (b) is correct.

35. (d) Let $A = \{4n + 2 \mid n \in N\}$ and $B = \{3n \mid n \in N\}$

$$\Rightarrow A = \{6, 10, 14, 18, 22, 26, 30, 34, 38, 42, \dots\}$$

$$\text{and } B = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30, \dots\}$$

$$\begin{aligned}\therefore A \cap B &= \{6, 18, 30, 42, \dots\} \\ &= 6 + 12n - 12 \\ &= 12n - 6\end{aligned}$$

Thus, $\{12n - 6 \mid n \text{ is a natural number}\}$

Hence, option (d) is correct.

36. (b) Given curve is $x = e^x y$

This can be rewritten as $y = x e^{-x}$

On differentiating w.r.t. x , we get

$$\frac{dy}{dx} = -x e^{-x} + e^{-x}$$

Put $\frac{dy}{dx} = 0$ for maxima or minima

$$\Rightarrow -x e^{-x} + e^{-x} = 0$$

$$\Rightarrow e^{-x}(1-x) = 0$$

Since, e^{-x} cannot be zero,

$$\therefore 1-x = 0 \Rightarrow x = 1$$

$$\text{Now, } \frac{d^2y}{dx^2} = -e^{-x} + x e^{-x} - e^{-x} = x e^{-x} - 2e^{-x} = e^{-x}(x-2)$$

$$\Rightarrow \left(\frac{d^2y}{dx^2} \right) < 0$$

$\therefore y$ is maximum at $x = 1$

Thus, when $x = 1$ then $y = e^{-1}$

Hence, maximum point on the curve $x = e^x y$ is $(1, e^{-1})$.

Hence, option (b) is correct.

37. (d) Number between 100 and 1000 are 3-digit numbers.

It is given that the digits should not be repeated.

Number of given digits = 5

In a 3-digit number, first number can be arranged in 5 ways.

Second number is 4 ways.

Third number is 3 ways.

$$\therefore \text{Numbers that can be formed} = 5 \times 4 \times 3 = 60$$

Hence, option (d) is correct.

38. (b) Given equation of circle is $x^2 + y^2 = 2$

$$\Rightarrow y = \sqrt{2 - x^2}$$

Required area = $4 \times \text{area of shaded portion}$

$$= 4 \int_0^{\sqrt{2}} \sqrt{2 - x^2} dx \quad \dots \text{(i)}$$

$$\text{Let } x = \sqrt{2} \sin t \Rightarrow t = \sin^{-1} \left(\frac{x}{\sqrt{2}} \right)$$

$$\text{Then } dx = \sqrt{2} \cos t dt$$

$$\begin{aligned}\therefore \int \sqrt{2 - x^2} dx &= \int \sqrt{2 - 2 \sin^2 t} \cdot \sqrt{2} \cos t dt \\ &= \int \sqrt{2 \cos^2 t} \cdot \sqrt{2} \cos t dt \\ &= \int 2 \cos^2 t dt\end{aligned}$$

We know that

$$\int \cos^n x dx = \frac{n-1}{n} \int \cos^{n-2} x dx + \frac{\cos^{n-1} x \cdot \sin x}{n}$$

$$\begin{aligned}\therefore \int \sqrt{2 - x^2} dx &= 2 \left[\frac{\cos t \cdot \sin t}{2} + \frac{1}{2} \int 1 \cdot t dt \right] \\ &= 2 \left[\frac{\cos t \sin t}{2} + \frac{t}{2} \right] \\ &= \cos t \sin t + t \\ &= \cos \left(\sin^{-1} \frac{x}{\sqrt{2}} \right) \sin \left(\sin^{-1} \frac{x}{\sqrt{2}} \right) + \sin^{-1} \frac{x}{\sqrt{2}} \\ &= \sqrt{1 - \frac{x^2}{2}} \cdot \frac{x}{\sqrt{2}} + \sin^{-1} \frac{x}{\sqrt{2}} \\ &= \frac{x}{2} \sqrt{2 - x^2} + \sin^{-1} \frac{x}{\sqrt{2}}\end{aligned}$$

$$\begin{aligned}\therefore 4 \int_0^{\sqrt{2}} \sqrt{2 - x^2} dx &= 4 \left[\frac{x}{2} \sqrt{2 - x^2} + \sin^{-1} \frac{x}{\sqrt{2}} \right]_0^{\sqrt{2}} \\ &= 4 \left[0 + \sin^{-1} \frac{\sqrt{2}}{\sqrt{2}} - 0 - \sin^{-1} \frac{0}{\sqrt{2}} \right] \\ &= 4 \left[\sin^{-1} 1 - \sin^{-1} 0 \right] \\ &= 4 \left(\frac{\pi}{2} - 0 \right) \\ &= 2\pi\end{aligned}$$

Hence, option (b) is correct.

39. (c) The given differential equation is

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = k \frac{d^2y}{dx^2}$$

To express it as a polynomial of derivatives we square both sides,

$$\Rightarrow \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = k \left(\frac{d^2y}{dx^2}\right)^2$$

Highest derivative has power = 2

Degree of differential equation = 2

Hence, option (c) is correct.

40. (c) Given that $(x-2a)(x-2b)+(y-2c)(y-2d)=0$

$$\Rightarrow x^2 - 2(a+b)x + 4ab + y^2 - 2(c+d)y + 4cd = 0$$

$$\Rightarrow x^2 + y^2 - 2(a+b)x - 2(c+d)y + 4(ab+cd) = 0$$

From the general equation of circle, we have

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

Centre $(-g, -f)$ and radius $= \sqrt{(-g)^2 + (-f)^2 + c}$

Therefore, here $g = -(a+b)$ and $f = -(c+d)$

Hence, centre $(-g, -f) = (a+b, c+d)$

Hence, option (c) is correct.

41. (a) We have given $\log_{10}(x+1) + \log_{10}5 = 3$

$$\Rightarrow \log_{10}5(x+1) = 3 \quad (\because \log m + \log n = \log mn)$$

$$\Rightarrow 5(x+1) = 10^3$$

$$\Rightarrow (x+1) = \frac{1000}{5}$$

$$\Rightarrow x = 200 - 1$$

$$\Rightarrow x = 199$$

Hence, option (a) is correct.

42. (c) Since, r and s are the roots of $Ax^2 + Bx + C = 0$, then

$$\therefore r+s = -\frac{B}{A} \text{ and } rs = \frac{C}{A}$$

$$\text{Now, given roots of } = \frac{n(n-3)}{2} \text{ be } = \frac{n(n-3)}{2}$$

$$\therefore r^2 + s^2 = -p \text{ and } r^2s^2 = q$$

$$\Rightarrow (r+s)^2 - 2rs = -p$$

$$\Rightarrow \left(-\frac{B}{A}\right)^2 - 2\left(\frac{C}{A}\right) = -p$$

$$\Rightarrow \frac{B^2}{A^2} - \frac{2C}{A} = -p$$

$$\Rightarrow \frac{B^2 - 2AC}{A^2} = -p$$

$$\Rightarrow p = \frac{2AC - B^2}{A^2}$$

Hence, option (c) is correct.

43. (c) Given that $z = 1 + \cos \frac{\pi}{5} + i \sin \frac{\pi}{5}$

Therefore, we have

$$\begin{aligned} |z| &= \sqrt{1^2 + \cos^2 \frac{\pi}{5} + 2 \cos \frac{\pi}{5} \sin^2 \frac{\pi}{5}} \\ &= \sqrt{1 + 1 + 2 \cos \frac{\pi}{5}} \\ &= \sqrt{2 \left(1 + \cos \frac{\pi}{5}\right)} \\ &= \sqrt{2 \left(1 + 2 \cos^2 \frac{\pi}{10} - 1\right)} \\ &= \sqrt{2 \left(2 \cos^2 \frac{\pi}{10}\right)} = 2 \cos \frac{\pi}{10} \end{aligned}$$

Hence, option (c) is correct.

44. (c) The given equation is $4(\sin^2 x + \cos x) = 1$

$$\Rightarrow 4\sin^2 x + 4\cos x = 1$$

$$\Rightarrow 4\sin^2 x + 4\cos x - 1 = 0$$

$$\Rightarrow 4(1 - \cos^2 x) + 4\cos x - 1 = 0$$

$$\Rightarrow 4 - 4\cos^2 x + 4\cos x - 1 = 0$$

$$\Rightarrow -4\cos^2 x + 4\cos x + 3 = 0$$

$$\Rightarrow 4\cos^2 x - 4\cos x - 3 = 0$$

This is a quadratic equation in $\cos x$

$$\Rightarrow 4\cos^2 x - 6\cos x + 2\cos x - 3 = 0$$

$$\Rightarrow (2\cos x - 3)(2\cos x + 1) = 0$$

$$\Rightarrow \cos x = \frac{3}{2} \text{ and } \cos x = -\frac{1}{2}$$

But $\cos x = \frac{3}{2}$ is not possible, therefore, $\cos x = -\frac{1}{2}$

$$\Rightarrow \cos A = -\frac{1}{2} = \cos 210^\circ$$

$$\Rightarrow A = 210^\circ$$

Hence, option (c) is correct.

45. (b) The given differential equation is

$$3e^x \tan y dx + (1+e^x) \sec^2 y dy = 0$$

By separating the variables, we get

$$3e^x dx = \frac{-(1+e^x) \sec^2 y}{\tan y} dy$$

$$\Rightarrow \frac{3e^x}{1+e^x} dx = -\frac{\sec^2 y}{\tan y} dy$$

Integrate on both the sides, we have

$$\Rightarrow \int \frac{3e^x}{1+e^x} dx + \int \frac{\sec^2 y}{\tan y} dy = 0$$

$$\Rightarrow 3\log(1+e^x) + \log \tan y = \log c$$

$$\Rightarrow \log(1+e^x)^3 \tan y = \log c \quad \{ \because \log m + \log n = \log mn \}$$

$$\Rightarrow (1+e^x)^3 \tan y = c$$

Hence, option (b) is correct.

46. (a) Consider the following $\lim_{x \rightarrow 0} \frac{\sin^2 ax}{bx}$

$$\text{Multiply and divide by } = \log \left(\frac{(1+x)^2}{(1-x)^2} \right)$$

$$\Rightarrow \lim_{x \rightarrow 0} \frac{\sin^2 ax}{bx} = \lim_{x \rightarrow 0} \left[\frac{\sin^2 ax}{bx} \times \frac{a^2 x^2}{a^2 x^2} \right]$$

$$= \lim_{x \rightarrow 0} \left[\frac{\sin^2 ax}{a^2 x^2} \times \frac{a^2 x^2}{bx} \right]$$

$$= \lim_{x \rightarrow 0} \left[\left(\frac{\sin ax}{ax} \right)^2 \times \frac{a^2 x}{b} \right]$$

$$= \lim_{x \rightarrow 0} \left(\frac{\sin ax}{ax} \right)^2 \cdot \lim_{x \rightarrow 0} \frac{a^2 x}{b}$$

$$= 1 \times 0 \quad \left(\because \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1 \right)$$

$$= 0$$

Hence, option (a) is correct.

47. (c) Number of 5 digits numbers with all distinct digit is same as filling of 5 vacant placed out of 10 boxes.

First digit of any number can be chosen in 9 ways.

Remaining 4 digits can be chosen in remaining 9 digits in ${}^9 P_4$ ways.

$$\therefore \text{Total no. of such number } 9 \times 9 \times 8 \times 7 \times 6 = 27216$$

Hence, option (c) is correct.

$$48. (a) \text{ Given that } \frac{x}{a} + \frac{y}{b} = 1 \quad \dots (i)$$

$$\text{and } \frac{x}{b} + \frac{y}{a} = 1 \quad \dots (ii)$$

From solving equations (i) and (ii), we get the intersection point.

$$bx + ay = ax + by$$

$$\Rightarrow (b-a)x = (b-a)y$$

$$\therefore x = y \quad \dots (iii)$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} = 1$$

$$\therefore x(a+b) = ab$$

$$\therefore x = \frac{ab}{a+b} \text{ and } y = \frac{ab}{a+b} \text{ from equation (iii)}$$

Hence, option (a) is correct.

49. (d) Let a be the first term and ar be the second term of GP with common ratio r .

$$\text{Given that } S_\infty = 6 \text{ and } a + ar = \frac{9}{2} \Rightarrow \frac{a}{1-r} = 6$$

$$\Rightarrow a = 6(1-r) \quad \dots (i)$$

$$\text{And } a + ar = \frac{9}{2}$$

$$\Rightarrow 6(1-r) + 6r(1-r) = \frac{9}{2} \quad [\text{from (i)}]$$

$$\Rightarrow 12 - 12r + 12r - 12r^2 = 9$$

$$\Rightarrow r^2 = \frac{3}{12} = \frac{1}{4} \Rightarrow r = \frac{1}{2} \text{ or } -\frac{1}{2}$$

$$\Rightarrow a = 3 \text{ or } 9$$

Hence, option (d) is correct.

50. (d) $xRy \Leftrightarrow x$ and y are graduates of the same university

Reflexive $xRx \Leftrightarrow x$ and x are graduates of the same university.

\therefore Relation is reflexive.

Symmetric $xRy \Leftrightarrow x$ and y are graduates of the same university

$\Rightarrow yRx \Leftrightarrow y$ and x are graduates of the same university.

\therefore Relation is symmetric.

Transitive $xRy, yRz \Leftrightarrow xRz$

It means x and y , y and z are graduates of the same university, then x and z are also graduates of the same university.

\therefore Relation is transitive.

Thus, relation is reflexive, symmetric and transitive.

Hence, option (d) is correct.

$$51. (d) \text{ Let } f(x) = \frac{\sin^5 x \cos^3 x}{x^4}$$

Then,

$$\begin{aligned} f(-x) &= \frac{\sin^5(-x) \cos^3(-x)}{(-x)^4} \\ &= \frac{-\sin^5 x \cos^3 x}{x^4} \\ &= -f(x) \end{aligned}$$

$\therefore f(x)$ is an odd function.

$$\text{Thus, } \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^5 x \cos^3 x}{x^4} dx = 0$$

Hence, option (d) is correct.

52. (c) Let ABC is an equilateral triangle with $A(0,0)$ and

$B(3, \sqrt{3})$ and C to be known.

$$\therefore AB = \sqrt{(3-0)^2 + (\sqrt{3}-0)^2} = \sqrt{9+3} = \sqrt{12}$$

Take option (a) i.e. $C(0, 2\sqrt{3})$

$$CA = \sqrt{(0)^2 + (2\sqrt{3})^2} = \sqrt{12}$$

$$CB = \sqrt{(3)^2 + (\sqrt{3})^2} = \sqrt{12}$$

Take option (b) i.e. $C(3, -\sqrt{3})$

$$CA = \sqrt{(3)^2 + (\sqrt{3})^2} = \sqrt{12}$$

$$CB = \sqrt{(0)^2 + (2\sqrt{3})^2} = \sqrt{12}$$

\therefore Both options (a) and (b) are correct.

Hence, option (c) is correct.

53. (c) Let $\sin \alpha$ and $\cos \alpha$ be the roots of $ax^2 + bx + c = 0$

$$\text{Now, } \sin \alpha + \cos \alpha = \frac{-b}{a} \text{ and } \sin \alpha \cos \alpha = \frac{c}{a}$$

$$\text{Consider } \sin \alpha + \cos \alpha = \frac{-b}{a}$$

$$\text{Squaring both sides, } (\sin \alpha + \cos \alpha)^2 = \frac{b^2}{a^2}$$

$$\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{b^2}{a^2}$$

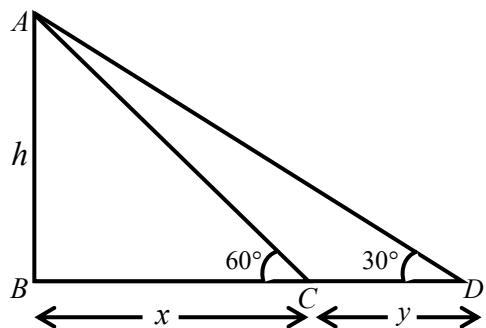
$$\Rightarrow 1 + \frac{2c}{a} = \frac{b^2}{a^2}$$

$$\Rightarrow \frac{a+2c}{a} = \frac{b^2}{a^2} \Rightarrow a+2c = \frac{b^2}{a}$$

$$\Rightarrow a^2 + 2ac = b^2 \Rightarrow b^2 - a^2 = 2ac$$

Hence, option (c) is correct.

54. (b) Let AB be the tower and AC and AD be the shadows of the tower. Let h be the height of the tower.



$$\text{In } \triangle ABC, \tan 60^\circ = \frac{h}{x} \quad \dots \text{(i)}$$

$$\text{In } \triangle ABD, \tan 30^\circ = \frac{h}{x+50} \quad \dots \text{(ii)}$$

$$(i) \div (ii) \Rightarrow \frac{\sqrt{3}}{\frac{1}{\sqrt{3}}} = \frac{x+50}{x}$$

$$\Rightarrow 3x = x+50$$

$$\Rightarrow x = 25$$

$$\therefore h = x\sqrt{3} = 25\sqrt{3}$$

Hence, option (b) is correct.

55. (b) Let N = National savings certificates and S = Shares

Total number of persons = 32

No. of persons who invest in National savings certificates = 30

No. of persons who invest in shares = 17

Therefore, $n(N \cup S) = 32, n(N) = 30, n(S) = 17$

We know that,

$$n(N \cup S) = n(N) + n(S) - n(N \cap S)$$

$$\Rightarrow 32 = 30 + 17 - n(N \cap S)$$

$$\Rightarrow n(N \cap S) = 47 - 32 = 15$$

Hence, option (b) is correct.

56. (c) Given that $P(n, r) = 2520$ and $C(n, r) = 21$

$${}^n P_r = \frac{n!}{(n-r)!} = 2520 \quad \dots \text{(i)}$$

$${}^n C_r = \frac{n!}{r!(n-r)!} = 21 \quad \dots \text{(ii)}$$

Divide equation (i) by (ii), we have

$$\Rightarrow r! = \frac{2520}{21} = 120$$

$$\Rightarrow r! = 5! \Rightarrow r = 5$$

$$\because {}^n C_r = 21 \Rightarrow {}^n C_5 = 21 \Rightarrow n = 7$$

$$\therefore C(n+1, r+1) = C(8, 6) = \frac{8!}{6!(8-6)!} = \frac{8 \times 7}{2} = 28$$

Hence, option (c) is correct.

57. (c) Given, angles of triangle are in ratio 1:2:3

Consider, $A = 30^\circ, B = 60^\circ$ and $C = 90^\circ$

$$\text{We know, } \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$\Rightarrow \frac{a}{\sin 30^\circ} = \frac{b}{\sin 60^\circ} = \frac{c}{\sin 90^\circ}$$

$$\Rightarrow \frac{a}{\frac{1}{2}} = \frac{b}{\frac{\sqrt{3}}{2}} = \frac{c}{1}$$

$$\Rightarrow a:b:c = \frac{1}{2} : \frac{\sqrt{3}}{2} : 1 = 1 : \sqrt{3} : 2$$

Hence, option (c) is correct.

$$\begin{aligned} 58. (a) \text{ Let } I &= \int \ln(x^2) dx \\ &= 2 \int 1 \cdot \ln(x) dx \quad \left\{ \because \ln(m^n) = n \ln(m) \right\} \\ &= 2 \left[\ln x \cdot x - \int \frac{1}{x} \cdot x dx \right] \quad \{ \text{using by parts} \} \\ &= 2[x \ln x - x] + c \\ &= 2x \ln x - 2x + c \end{aligned}$$

Hence, option (a) is correct.

59. (a) The general equation of all parabolas where axes are parallel to y -axis is

$$y = Ax^2 + Bx + C \quad \dots \text{(i)}$$

where A, B and C are arbitrary constants.

On differentiating equation (i) w.r.t. x , we get

$$\frac{dy}{dx} = 2Ax + B \quad \dots \text{(ii)}$$

On differentiating equation (ii) w.r.t. x , we get

$$\frac{d^2y}{dx^2} = 2A \quad \dots \text{(iii)}$$

On differentiating equation (iii) w.r.t. x , we get

$$\frac{d^3y}{dx^3} = 0$$

Hence, option (a) is correct.

60. (a) The line $4x + y = 4$ can be written as $y = -4x + 4$

So, slope is -4

The line parallel to $4x + y = 4$ will have slope -4 only.

Given point $= (1, 3)$

Equation of line passing through $(1, 3)$ and slope -4 is

$$y - 3 = -4(x - 1)$$

$$\Rightarrow y - 3 = -4x + 4$$

$$\Rightarrow 4x + y = 7$$

Solving the two equations, we get

$$x = \frac{3}{2} \text{ and } y = 1$$

The distance between the points $(1, 3)$ and $\left(\frac{3}{2}, 1\right)$ is

$$= \sqrt{\left(\frac{3}{2} - 1\right)^2 + (1 - 3)^2} = \sqrt{\left(\frac{1}{2}\right)^2 + (-2)^2} = \sqrt{\frac{1}{4} + 4} = \frac{\sqrt{17}}{2}$$

Hence, option (d) is correct.

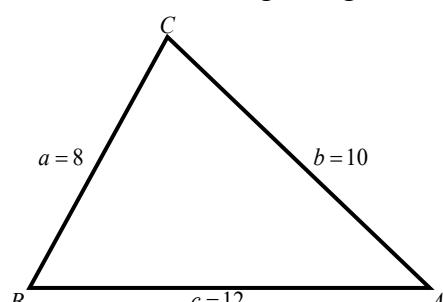
61. (c) Let $A = \{a, b, c\} \Rightarrow O(A) = 3$

Now, number of proper subsets of

$$A = 2^{O(A)} - 1 = 2^3 - 1 = 7$$

Hence, option (c) is correct.

62. (b) Consider the following triangle



We know from the cosine law that, we have

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{64 + 100 - 144}{2(8)(10)} = \frac{1}{8}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{100 + 144 - 64}{2(10)(12)} = \frac{3}{4}$$

$$\sin C = \frac{3\sqrt{7}}{8} \text{ and } \sin A = \frac{\sqrt{7}}{4}$$

$$\frac{\cos C}{\cos A} = \frac{1}{6} < 1 \Rightarrow \cos C < \cos A \Rightarrow C > A$$

$$\cos(C - A) = \cos C \cos A + \sin C \sin A$$

$$= \frac{1}{8} \times \frac{3}{4} + \frac{3\sqrt{7}}{8} \times \frac{\sqrt{7}}{4} = \frac{3}{4} = \cos A$$

$$\Rightarrow C - A = A \Rightarrow C = 2A$$

Hence, option (b) is correct.

63. (c) Given matrix is $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

$$\text{So, } A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

and

$$A^3 = 3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= 3 \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = 9 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 3^2 A$$

similarly $A^4 = 3^3 A$. Hence $A^n = 3^{n-1} A$

Hence, option (c) is correct.

64. (b) Consider the following quotient

$$\begin{aligned}
 \frac{1+x+iy}{1+x-iy} &= \frac{(1+x+iy)(1+x+iy)}{(1+x-iy)(1+x+iy)} \quad \{ \text{by rationalizing} \} \\
 &= \frac{(1+x)^2 + iy(1+x) + iy(1+x) - y^2}{1+x^2 + 2x + y^2} \quad \{ \because i^2 = -1 \} \\
 &= \frac{1+x^2 + 2x - y^2 + 2iy(1+x)}{2(1+x)} \quad \{ \because x^2 + y^2 = 1 \} \\
 &= \frac{1 - y^2 + 2x + x^2 + 2iy(1+x)}{2(1+x)} \\
 &= \frac{2x^2 + 2x + 2iy(1+x)}{2(1+x)} \\
 &= x + iy \quad \{ \because 1 - y^2 = x^2 \}
 \end{aligned}$$

Hence, option (b) is correct.

65. (a) Let the required vector be $\hat{i} + \hat{j}$

Since, the vector $\hat{i} + \hat{j}$ is equally inclined to the vectors $\hat{i} + 3\hat{j}$ and $3\hat{i} + \hat{j}$. Therefore,

Angle between $\hat{i} + \hat{j}$ and $\hat{i} + 3\hat{j} = \theta_1$ is equal to the angle between $\hat{i} + \hat{j}$ and $3\hat{i} + \hat{j} = \theta_2$
 \therefore Angle between $\hat{i} + \hat{j}$ and $\hat{i} + 3\hat{j}$

$$\begin{aligned}
 &= \cos^{-1} \left[\frac{(1)(1) + (1)(3)}{\sqrt{(1)^2 + (1)^2} \sqrt{(1)^2 + (3)^2}} \right] \\
 &= \cos^{-1} \left[\frac{1+3}{\sqrt{2} \sqrt{10}} \right] \\
 &= \cos^{-1} \left[\frac{4}{\sqrt{20}} \right] = \cos^{-1} \left[\frac{2}{\sqrt{5}} \right]
 \end{aligned}$$

And, angle between $\hat{i} + \hat{j}$ and $3\hat{i} + \hat{j}$

$$\begin{aligned}
 &= \cos^{-1} \left[\frac{(1)(2) + (1)(1)}{\sqrt{(1)^2 + (3)^2} \sqrt{(1)^2 + (1)^2}} \right] \\
 &= \cos^{-1} \left[\frac{1+3}{\sqrt{10} \sqrt{2}} \right] \\
 &= \cos^{-1} \left[\frac{4}{\sqrt{20}} \right] = \cos^{-1} \left[\frac{2}{\sqrt{5}} \right]
 \end{aligned}$$

Hence, required vector is $\hat{i} + \hat{j}$

Hence, option (a) is correct.

66. (d) Given equations are $x^2 + kx + 64 = 0$ (i)

and $x^2 - 8x + k = 0$ (ii)

Since, both equations have real roots, discriminant ≥ 0

$$\Rightarrow b^2 \geq 4ac$$

From equation (i), we have

$$k^2 \geq 4(64) \Rightarrow k^2 \geq 256 \Rightarrow k \geq 16 \quad \text{....(A)}$$

And from equation (ii), we have

$$64 \geq 4k \Rightarrow 4k \leq 64 \Rightarrow k \leq 16 \quad \text{....(B)}$$

Hence, from equation (A) and (B), we have

$$k = 16$$

Hence, option (d) is correct.

67. (c) The given system of equations are:

$$p^2x + (p+1)^3y = (p+2)^3 \quad \text{....(i)}$$

$$px + (p+1)y = p+2 \quad \text{....(ii)}$$

$$x + y = 1 \quad \text{....(iii)}$$

This system is consistent, if values of x and y from first two equations satisfy the third equation.

$$\text{which} \Rightarrow \begin{vmatrix} p^3 & (p+1)^3 & (p+2)^3 \\ p & (p+1) & (p+2) \\ 1 & 1 & 1 \end{vmatrix} = 0$$

Applying $C_2 \rightarrow C_2 - C_1$

$$\begin{aligned}
 & \Rightarrow \begin{vmatrix} p^3 & (p+1)^3 - p^3 & (p+2)^3 - p^3 \\ p & 1 & 2 \\ 1 & 0 & 0 \end{vmatrix} = 0 \\
 & \Rightarrow 2(p+1)^3 - 2p^3 - (p+2)^3 + p^3 = 0 \\
 & \Rightarrow 2(p^3 + 1 + 3p^2 + 3p) - 2p^3 - (p^3 + 8 + 12p + 6p^2) + p^3 = 0 \\
 & \Rightarrow 2p^3 + 2 + 6p^2 + 6p - 2p^3 - p^3 - 8 - 12p - 6p^2 + p^3 = 0 \\
 & \Rightarrow -6 - 6p = 0 \\
 & \Rightarrow p = -1
 \end{aligned}$$

Hence, option (c) is correct.

68. (c) S = Set of all integers and

$$R = \{(a, b), a, b \in S \text{ and } ab \geq 0\}$$

For reflexive:

$$aRa \Rightarrow a \cdot a = a^2 \geq 0 \text{ for all integers } a \cdot a \geq 0$$

For symmetric:

$$aRb \Rightarrow ab \geq 0 \forall a, b \in S$$

If $ab \geq 0$, then $ba \geq 0 \Rightarrow bRa$

For transitive:

If $ab \geq 0, bc \geq 0$, then also $ac \geq 0$

Relation R is reflexive, symmetric and transitive.

Therefore, relation is equivalence.

Hence, option (c) is correct.

69. (a) Statement 1:

A non-leap year has 365 days. i.e., 52 weeks and 1 day.

1 day can be {Sunday}, {Monday}, {Tuesday}, {Wednesday}, {Thursday}, {Friday}, {Saturday}.

In total, there are 7 possibilities and 1 possibility is Sunday.

$$\therefore \text{Required probability} = \frac{1}{7}$$

A leap year has 366 days. i.e., 52 weeks and 2 days.

2 days can be {Sun, Mon}, {Mon, Tue}, {Tue, Wed}, {Wed, Thu}, {Thu, Fri}, {Fri, Sat}, {Sat, Sun}.

In total, there are 7 possibilities and 2 possibilities have Sundays.

$$\therefore \text{Required probability} = \frac{2}{7}$$

So, statement 1 is correct.

Statement 2:

March has 31 days. i.e., 4 complete weeks and 3 days. 3 days can be {S, M, T}, {M, T, W}, {T, W, Th}, {W, Th, F}, {Th, F, Sa}, {F, Sa, S}, {Sa, S, M}.

In total 7 possibilities, Monday can come in 3 possibilities.

$$\therefore \text{Required probability} = \frac{3}{7}$$

April has 30 days, i.e., 4 complete weeks and 2 days.

2 days can be {S, M}, {M, T}, {T, W}, {W, Th}, {Th, F}, {F, Sa}, {Sa, S}.

In total 7 possibilities, Monday can come in 2 possibilities.

$$\therefore \text{Required probability} = \frac{2}{7}$$

So, statement 2 is wrong.

Hence, option (a) is correct.

70. (c) Given that $f(x) = |x| + x^2$

$$\Rightarrow f(x) = \begin{cases} x^2 + x, & x \geq 0 \\ x^2 - x, & x < 0 \end{cases}$$

Consider the left hand limit $\lim_{x \rightarrow 0^-} f(x)$

$$\begin{aligned}
 \lim_{x \rightarrow 0^-} f(x) &= \lim_{h \rightarrow 0} f(0-h) = \lim_{h \rightarrow 0} f(0-h)^2 - (0-h) \\
 &= \lim_{h \rightarrow 0} h^2 + h \\
 &= 0
 \end{aligned}$$

And the right hand limit $\lim_{x \rightarrow 0^+} f(x)$

$$\begin{aligned}
 \lim_{x \rightarrow 0^+} f(x) &= \lim_{h \rightarrow 0} f(0+h) = \lim_{h \rightarrow 0} f(0+h)^2 - (0+h) \\
 &= \lim_{h \rightarrow 0} h^2 + h \\
 &= 0
 \end{aligned}$$

Since $LHL = RHL = f(0)$

$\Rightarrow f(x)$ is continuous at $x = 0$.

Now,

$$LHD = \lim_{h \rightarrow 0} \frac{f(0-h) - f(0)}{-h} = \lim_{h \rightarrow 0} \frac{h^2 + h}{-h} = -\lim_{h \rightarrow 0} h + 1 = -1$$

And,

$$\text{RHD} = \lim_{h \rightarrow 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \rightarrow 0} \frac{h^2 + h}{h} = \lim_{h \rightarrow 0} h + 1 = 1$$

Thus, LHD \neq RHD

$\Rightarrow f(x)$ is not differentiable at $x = 0$

Hence, option (c) is correct.

71. (a) Let $R = \{(1,1), (2,2), (3,3), (1,2), (2,3), (1,3)\}$

Reflexive

Since, 1R1, 2R2, 3R3 in the set R

$\therefore R$ is reflexive relation.

Symmetric

Since, 1R2 but 2 is not related to 1 in R

$\therefore R$ is not symmetric relation.

Transitive

1R2, 2R3 \Rightarrow 1R3

$\therefore R$ is transitive relation.

Hence, R is reflexive and transitive but not symmetric.

Hence, option (a) is correct option.

72. (a) The general term of GP = ar^{n-1}

Given that $a_{10} = 9$ and $a_4 = 4$

$\Rightarrow ar^9 = 9$ and $ar^3 = 4$

On dividing, we get

$$\frac{ar^9}{ar^3} = \frac{9}{4} \Rightarrow r^6 = \frac{9}{4} \quad \dots \text{(i)}$$

Therefore,

$$ar^3 = 4 \Rightarrow (ar^3)^2 = 4^2$$

$$\Rightarrow a^2 r^6 = 16$$

$$\Rightarrow a^2 \times \frac{9}{4} = 16$$

$$\Rightarrow a^2 = \frac{64}{9} \Rightarrow a = \frac{8}{3}$$

$$\text{Thus, } a_7 = ar^6 = \frac{8}{3} \times \frac{9}{4} = 6$$

Hence, option (a) is correct.

73. (b) Let $A = \{1, 2, 5, 6\}$ and $B = \{1, 2, 3\}$

$$\therefore A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (5,1), (5,2), (5,3), (6,1), (6,2), (6,3)\}$$

And

$$B \times A = \{(1,1), (1,2), (1,5), (1,6), (2,1), (2,2), (2,5), (2,6), (3,1), (3,2), (3,5), (3,6)\}$$

$$\Rightarrow (A \times B) \cap (B \times A) = \{(1,1), (1,2), (2,1), (2,2)\}$$

Hence, option (b) is correct.

74. (c) Let the two equations be $x^2 + mx + 1 = 0$ and $x^2 + x + m = 0$

Let given equations have a common root α .

Therefore, ' α ' satisfies the both equations.

Then, $\alpha^2 + m\alpha + 1 = 0$ and $\alpha^2 + \alpha + m = 0$

$$\Rightarrow \frac{\alpha^2}{m^2 - 1} = \frac{\alpha}{1 - m} = \frac{1}{1 - m}$$

By equation 2nd and 3rd, we get

$$\Rightarrow \frac{\alpha}{1 - m} = \frac{1}{1 - m} \Rightarrow \alpha = 1$$

Also, by equating 1st and 3rd, we get

$$\frac{\alpha^2}{m^2 - 1} = \frac{1}{1 - m}$$

$$\Rightarrow 1 - m = m^2 - 1 \quad (\because \alpha = 1)$$

$$\Rightarrow m^2 + m - 2 = 0$$

$$\Rightarrow m = 1 \text{ and } m = -2$$

Hence, option (c) is correct.

75. (b) Let $I = \int_0^{\pi/2} \frac{dx}{3 \cos x + 5}$

$$\Rightarrow I = \int_0^{\pi/2} \frac{dx}{3 \left[\frac{1 - \tan^2 \frac{x}{2}}{2} \right] + 5}$$

$$\Rightarrow I = \int_0^{\pi/2} \frac{\left(1 + \tan^2 \frac{x}{2}\right) dx}{3 - 3 \tan^2 \frac{x}{2} + 5 + 5 \tan^2 \frac{x}{2}}$$

$$\Rightarrow I = \int_0^{\pi/2} \frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} + 8} = \frac{1}{2} \int_0^{\pi/2} \frac{\sec^2 \frac{x}{2} dx}{\tan^2 \frac{x}{2} + 2^2}$$

$$\text{Put } \tan \frac{x}{2} = y \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2} dx = dy$$

$$\therefore I = \frac{1}{2} \int_0^1 \frac{dy}{y^2 + 2^2} = \frac{1}{2} \left[\tan^{-1} \left(\frac{y}{2} \right) \right]_0^1 \\ = \frac{1}{2} \left[\tan^{-1} \left(\frac{1}{2} \right) - 0 \right] = \frac{1}{2} \tan^{-1} \left(\frac{1}{2} \right)$$

$$\text{Also, } I = \frac{1}{2} \tan^{-1} \frac{1}{2} = k \cot^{-1}(2)$$

$$\Rightarrow \frac{1}{2} \tan^{-1} \frac{1}{2} = k \tan^{-1} \left(\frac{1}{2} \right) \quad [\because \tan^{-1}(x) = \cot^{-1}(x)]$$

$$\therefore k = \frac{1}{2}$$

Hence, option (b) is correct.

76. (a) We know from the properties of triangle that

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} \Rightarrow \cos^2 \frac{A}{2} = \frac{s(s-a)}{bc}$$

$$\text{and } \cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}} \Rightarrow \cos^2 \frac{C}{2} = \frac{s(s-c)}{ab}$$

$$\begin{aligned} \text{So, } a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} \\ = a \left(\frac{s(s-c)}{ab} \right) + c \left(\frac{s(s-a)}{bc} \right) = \frac{s(s-c+s-a)}{b} \\ = \frac{s(2s-a-c)}{b} = \frac{s(a+b+c-a-c)}{b} = \frac{sb}{b} = s \end{aligned}$$

$$= \frac{30}{2} = 15 \text{ cm} \quad [\text{given that } 2s = 30]$$

Hence, option (a) is correct.

77. (b) If (l_1, m_1, n_1) and (l_2, m_2, n_2) are the direction ratios then the angle between the lines is

$$\cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

Here, $l_1 = 1, m_1 = 1, n_1 = 1$ and $l_2 = 1, m_2 = -1, n_2 = n$ and $\theta = 60^\circ$

$$\therefore \cos 60^\circ = \frac{1 \times 1 + 1 \times (-1) + 1 \times n}{\sqrt{(1)^2 + (1)^2 + (1)^2} \sqrt{(1)^2 + (-1)^2 + (n)^2}}$$

$$\Rightarrow \frac{1}{2} = \frac{n}{\sqrt{3} \sqrt{2+n^2}} \Rightarrow 3(2+n^2) = 4n^2$$

$$\Rightarrow n^2 = 6 \Rightarrow n = \pm \sqrt{6}$$

Hence, option (b) is correct.

78. (b) The given equation is

$$y = \frac{2}{3C} (Cx - 1)^{3/2} + B$$

On differentiating both sides w.r.t. x , we get

$$\frac{dy}{dx} = \frac{2}{3C} \cdot \frac{3}{2} (Cx - 1)^{\frac{1}{2}} \cdot C + 0 = (Cx - 1)^{\frac{1}{2}}$$

On squaring both sides, we get

$$\left(\frac{dy}{dx} \right)^2 = Cx - 1$$

$$\Rightarrow \left(\frac{dy}{dx} \right)^2 + 1 = Cx \quad \dots (i)$$

Now, on differentiating w.r.t. x , we get

$$2 \left(\frac{dy}{dx} \right) \cdot \frac{d^2 y}{dx^2} = C$$

From equation (i), we get

$$\left(\frac{dy}{dx} \right)^2 + 1 = 2x \left(\frac{dy}{dx} \right) \frac{d^2 y}{dx^2}$$

Hence, option (b) is correct.

79. (a) Let $A(x, y)$ be the point that divides $(4, 3)$ and $(5, 7)$ internally in the ratio $2:3$

$$A(x, y) = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right)$$

$$= \left(\frac{10+12}{2+3}, \frac{14+9}{2+3} \right) = \left(\frac{22}{5}, \frac{23}{5} \right)$$

Let $B(x', y')$ be the point that divides $(4, 3)$ and $(5, 7)$ externally in the ratio $2:3$

$$B(x', y') = \left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n} \right)$$

$$= \left(\frac{10-12}{2-3}, \frac{14-9}{2-3} \right) = (2, -5)$$

$$\therefore \text{Distance between } A \text{ and } B = \sqrt{(x'-x)^2 + (y'-y)^2}$$

$$= \sqrt{\left(2 - \frac{22}{5}\right)^2 + \left(-5 - \frac{23}{5}\right)^2}$$

$$= \sqrt{\frac{(-12)^2}{25} + \frac{(-48)^2}{25}}$$

$$= \frac{12}{5} \sqrt{1+4^2} = \frac{12\sqrt{17}}{5}$$

Hence, option (a) is correct.

80. (c) The given equation of sphere is

$$ax^2 + by^2 + cz^2 - 2x + 4y + 2z - 3 = 0$$

This equation represents a equation of sphere, if coefficient of x^2, y^2 and z^2 is same. i.e. $a = b = c$

\therefore Equation of sphere can be re-written as

$$bx^2 + by^2 + bz^2 - 2x + 4y + 2z - 3 = 0$$

$$\Rightarrow x^2 + y^2 + z^2 - \frac{2x}{b} + \frac{4y}{b} + \frac{2z}{b} - \frac{3}{b} = 0$$

The centre of this sphere is $\left(\frac{1}{b}, -\frac{2}{b}, -\frac{1}{b} \right)$

Given that the centre of sphere is $\left(\frac{1}{2}, -1, -\frac{1}{2} \right)$

$$\therefore \frac{1}{b} = \frac{1}{2} \Rightarrow b = 2$$

Hence, option (c) is correct.

81. (d) Let $A = \hat{i} + \hat{j} + \hat{k}$, $B = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and

$$C = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\text{Now, } B+C = (2\hat{i} + 4\hat{j} - 5\hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k})$$

$$= (2+b)\hat{i} + 6\hat{j} - 2\hat{k}$$

The unit vector parallel to $B+C$ is

$$\hat{n} = \frac{(2+b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2+b)^2 + (6)^2 + (-2)^2}} = \frac{(2+b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{b^2 + 4b + 44}}$$

$$\text{Now, } (\hat{i} + \hat{j} + \hat{k}) \cdot \hat{n} = 1 \Rightarrow \frac{2+b+6-2}{\sqrt{b^2 + 4b + 44}} = 1$$

$$\Rightarrow 2+b+6-2 = \sqrt{b^2 + 4b + 44}$$

$$\Rightarrow 8b = 8 \Rightarrow b = 1$$

Hence, option (d) is correct.

$$82. (a) \text{Let } \begin{vmatrix} k & b+c & b^2+c^2 \\ k & c+a & c^2+a^2 \\ k & a+b & a^2+b^2 \end{vmatrix} = \Delta$$

$$= k \begin{vmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ b^2+c^2 & c^2+a^2 & a^2+b^2 \end{vmatrix}$$

Applying $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$

$$= k \begin{vmatrix} 1 & 0 & 0 \\ b+c & a-b & a-c \\ b^2+c^2 & a^2-b^2 & a^2-c^2 \end{vmatrix}$$

$$= k \begin{vmatrix} 1 & 0 & 0 \\ b+c & a-b & a-c \\ b^2+c^2 & (a-b)(a+b) & (a-c)(a+c) \end{vmatrix}$$

$$= k(a-b)(a-c) \begin{vmatrix} 1 & 1 \\ a+b & a+c \end{vmatrix}$$

$$= k(a-b)(a-c)(a+c-a-b)$$

$$= k(a-b)(b-c)(c-a)$$

But given $\Delta = (a-b)(b-c)(c-a)$

Thus, $k = 1$

Hence, option (a) is correct.

83. (c) From the properties of a triangle, we know that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Given that $a = 2b$ and $A = 3B$

$$\Rightarrow \frac{\sin 3B}{\sin B} = 2 \Rightarrow \frac{3\sin B - 4\sin^3 B}{\sin B} = 2$$

$$\Rightarrow 3 - 4\sin^2 B = 2$$

$$\Rightarrow \sin^2 B = \left(\frac{1}{2}\right)^2$$

$$\Rightarrow \sin B = \frac{1}{2} = \sin \frac{\pi}{6}$$

$$\Rightarrow B = \frac{\pi}{6}$$

$$\text{Since, } A = 3B, \text{ so } \angle A = \frac{\pi}{2}$$

Thus, triangle is right angled triangle.

Hence, option (c) is correct.

84. (c) Let a and b be two numbers such that

$$\text{A.M.} = \frac{a+b}{2} = 10 \Rightarrow a+b = 20 \quad \dots(\text{i})$$

$$\text{and G.M.} = \sqrt{ab} = 8 \Rightarrow ab = 64 \quad \dots(\text{ii})$$

From (i) and (ii), we have

$$a^2 - 20a + 64 = 0 \Rightarrow (a-4)(a-16) = 0$$

$$\Rightarrow a = 4, 16$$

Thus, when $a = 4, b = 16$ and when $a = 16, b = 4$

Thus one number exceeds the other number by 12.

Hence, option (c) is correct.

$$85. (c) \text{ Let } D = \begin{vmatrix} 1 & z & -y \\ -z & 1 & x \\ y & -x & 1 \end{vmatrix}$$

Expanding along R_1

$$\begin{aligned} \Rightarrow D &= 1 \begin{vmatrix} 1 & z \\ -z & 1 \end{vmatrix} - z \begin{vmatrix} z & -y \\ y & 1 \end{vmatrix} - y \begin{vmatrix} -z & 1 \\ y & -x \end{vmatrix} \\ &= (1 + z^2) - z(-z - xy) - y(xz - y) \\ &= 1 + z^2 + z^2 + xyz - xyz + y^2 \\ &= 1 + x^2 + y^2 + z^2 \\ &= 1 + 1 = 2 \end{aligned}$$

Hence, option (c) is correct.

86. (d) For reflexive:

$$(a, a) = a - a = 0 \text{ is divisible by 5.}$$

For symmetry:

If $(a - b)$ is divisible by 5, then $b - a = -(a - b)$ is also divisible by 5.

Thus relation is symmetric.

For transitive:

If $(a - b)$ and $(b - c)$ is divisible by 5.

Then $(a - c)$ is also divisible by 5

Thus relation is transitive.

$\therefore R$ is an equivalent relation.

Hence, option (d) is correct.

87. (a) Consider the quadratic equation $ax^2 + bx + c = 0$

$$\text{whose one root is } \frac{1}{2 - \sqrt{-2}}$$

$$\begin{aligned} \text{Consider } \frac{1}{2 - \sqrt{-2}} &= \frac{1}{2 - \sqrt{2}i} \times \frac{2 + \sqrt{2}i}{2 + \sqrt{2}i} \\ &= \frac{2 + \sqrt{2}i}{4 + 2i} = \frac{2 + \sqrt{2}i}{6} \end{aligned}$$

$$\therefore \text{Another root will be } \frac{2 - \sqrt{2}i}{6}$$

(\because complex roots always occurs in pair)

$$\text{Thus, sum of roots} = \frac{2 + \sqrt{2}i}{6} + \frac{2 - \sqrt{2}i}{6} = \frac{4}{6}$$

$$\text{And product of roots} = \left(\frac{2 + \sqrt{2}i}{6}\right) \left(\frac{2 - \sqrt{2}i}{6}\right) = \frac{4 + 2}{36} = \frac{1}{6}$$

\therefore Required equation is

$$\begin{aligned}
 & x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0 \\
 \Rightarrow & x^2 - \frac{4}{6}x + \frac{1}{6} = 0 \\
 \Rightarrow & 6x^2 - 4x + 1 = 0
 \end{aligned}$$

Thus, the values of a, b, c are $6, -4, 1$ respectively.

Hence, option (a) is correct.

$$88. (b) \text{ Given, } \begin{vmatrix} 2a & 3r & x \\ 4b & 6s & 2y \\ -2c & -3t & -z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$

Taking 2 common from C_1 and 3 from C_2 in LHS

$$\therefore 2 \times 3 \begin{vmatrix} a & r & x \\ 2b & 2s & 2y \\ -c & -t & -z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$

Taking 2 common from R_2 and -1 from R_3 in LHS.

$$\therefore -12 \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$

$$\Rightarrow \lambda = -12$$

Hence, option (b) is correct.

89. (d) Events when a coin is flipped and head occurs are $\{HT, HH\}$.

Events when a coin is flipped and tail occurs are $\{T1, T2, T3, T4, T5, T6\}$.
 $(\because$ dice are rolled after tail appears)

So, total number of events = 8

Favourable event = $\{HT\} = 1$

$$\therefore \text{Required probability} = \frac{1}{8}$$

Hence, option (d) is correct.

90. (a) Let $\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{OB} = 2\hat{i} + 5\hat{j} - \hat{k}$ and $\overrightarrow{OC} = -\hat{i} + \hat{j} + 2\hat{k}$ be three position vectors.

$$\text{Now, } \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \hat{i} + 3\hat{j} - 4\hat{k}$$

$$\text{And } \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -2\hat{i} - \hat{j} - \hat{k}$$

$$\therefore \text{Area of } \Delta ABC = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$$

$$\text{Now, } \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -4 \\ -2 & -1 & -1 \end{vmatrix}$$

$$\begin{aligned}
 & = \hat{i}(-3 - 4) - \hat{j}(-1 - 8) + \hat{k}(-1 + 6) \\
 & = -7\hat{i} + 9\hat{j} + 5\hat{k}
 \end{aligned}$$

$$\therefore \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \sqrt{(-7)^2 + (9)^2 + (5)^2} = \sqrt{155}$$

$$\therefore \text{Required area} = \frac{\sqrt{155}}{2}$$

Hence, option (a) is correct.

91. (c) As A and B are independent events.

$$\text{So, } P(A \cap B) = P(A) \cdot P(B)$$

$$\Rightarrow P(A \cap B) = \frac{1}{5} P(B)$$

$$\text{Now, } P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Rightarrow \frac{7}{10} = \frac{1}{5} + P(B) - \frac{1}{5} P(B)$$

$$\Rightarrow P(B) \left(1 - \frac{1}{5} \right) = \frac{7}{10} - \frac{1}{5}$$

$$\Rightarrow \frac{4}{5} P(B) = \frac{1}{2} \Rightarrow P(B) = \frac{5}{8}$$

$$\text{Now, } P(\overline{B}) = 1 - P(B) = 1 - \frac{5}{8} = \frac{3}{8}$$

Hence, option (c) is correct.

92. (d) Given points are $A(k, 1, -1)$, $B(2k, 0, 2)$ and $C(2+2k, k, 1)$

Let r_1 = length of line

$$AB = \sqrt{(2k-1)^2 + (0-1)^2 + (2+1)^2} = \sqrt{k^2 + 10}$$

Let r_2 = length of line

$$BC = \sqrt{(2)^2 + k^2 + (-1)^2} = \sqrt{k^2 + 5}$$

Now, let l_1, m_1, n_1 be the direction-cosines of line AB and l_2, m_2, n_2 be the direction cosines of BC .

Since AB is perpendicular to BC

$$\therefore l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

$$\text{Now, } l_1 = \frac{k}{\sqrt{k^2 + 10}}, m_1 = \frac{-1}{\sqrt{k^2 + 10}}, n_1 = \frac{3}{\sqrt{k^2 + 10}}$$

$$\text{And } l_2 = \frac{2}{\sqrt{k^2 + 5}}, m_2 = \frac{k}{\sqrt{k^2 + 5}}, n_2 = \frac{-1}{\sqrt{k^2 + 5}}$$

$$\text{So, } l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

$$\Rightarrow \frac{2k}{\sqrt{k^2 + 10} \sqrt{k^2 + 5}} - \frac{k}{\sqrt{k^2 + 10} \sqrt{k^2 + 5}} - \frac{3}{\sqrt{k^2 + 10} \sqrt{k^2 + 5}} \\ \Rightarrow 2k - k - 3 = 0$$

$$\Rightarrow k = 3$$

For $k = 3$, AB is perpendicular to BC .

Hence, option (d) is correct.

93. (c) The relation S is defined in the set of integers Z and xSy , if integer x divides integer y .

Reflexive: Since, every integer divides itself.

\therefore integer x divides integer y

$$\Rightarrow xSx$$

Hence, S is reflexive.

Symmetric: Let $x, y \in Z$ such that xSy

i.e., integer x divides integer y .

Now, this does not implies that integer y divided integer x .

e.g. take $x = 2$ and $y = 4$

Then, 2 divided 4 but 4 does not divides 2.

Thus, S is not symmetric.

Transitive: Let $x, y, z \in Z$ such that xSy and ySz .

This implies integer x divides integer y and integer y divides integer z .

Then, integer x divides integer z .

$$\Rightarrow xSz$$

Hence, S is transitive.

Hence, option (c) is correct.

$$94. (c) \text{ Given } \begin{vmatrix} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{vmatrix}$$

$$\text{Applying } C_1 \rightarrow C_1 - C_3$$

$$= \begin{vmatrix} -b & c & a \\ -c & c+a & b \\ -a & a+b & c \end{vmatrix}$$

$$\text{Applying } C_2 \rightarrow C_2 + C_1$$

$$= \begin{vmatrix} -b & c & a \\ -c & a & b \\ -a & b & c \end{vmatrix} = (-1) \begin{vmatrix} b & c & a \\ c & a & b \\ a & b & c \end{vmatrix}$$

$$= -1 [b(ac - b^2) - c(c^2 - ab) + a(bc - a^2)]$$

$$= -[abc - b^3 - c^3 + abc + abc - a^3]$$

$$= a^3 + b^3 + c^3 - 3abc$$

Hence, option (c) is correct.

95. (a) Given that $L_1 \equiv x + y - 4 = 0$

$$L_2 \equiv 3x + y - 4 = 0$$

$$L_3 \equiv x + 3y - 4 = 0$$

$$\text{Slope of } L_1 = m_1 = \frac{-1}{1} = -1$$

$$\text{Slope of } L_2 = m_2 = \frac{-3}{1} = -3$$

$$\text{Slope of } L_3 = m_3 = \frac{-1}{3}$$

Angle between L_1 and L_2

$$\Rightarrow \tan \theta_1 = \left| \frac{-1 - (-3)}{1 + (-1)(-3)} \right| = \left| \frac{-1 + 3}{1 + 3} \right| = \frac{1}{2}$$

Angle between L_2 and L_3

$$\Rightarrow \tan \theta_2 = \left| \frac{-3 - \left(-\frac{1}{3} \right)}{1 + (-3)\left(-\frac{1}{3} \right)} \right| = \left| \frac{-9 + 1}{3 + 3} \right| = \frac{4}{3}$$

Angle between L_1 and L_3

$$\Rightarrow \tan \theta_3 = \left| \frac{-1 - \left(-\frac{1}{3}\right)}{1 + (-1)\left(-\frac{1}{3}\right)} \right| = \left| \frac{-3 + 1}{3 + 1} \right| = \frac{1}{2}$$

∴ The triangle formed is an isosceles triangle.

Hence, option (a) is correct.

96. (d) Let $\vec{a} = p(-3\hat{i} - 2\hat{j} + 13\hat{k})$
 $= (-3p)\hat{i} + (-2p)\hat{j} + (13p)\hat{k}$

It is given that \vec{a} is of unit length.

$$\begin{aligned} \therefore |\vec{a}| = 1 &\Rightarrow |\vec{a}|^2 = 1 \\ \Rightarrow (-3p)(-3p) + (-2p)(-2p) + (13p)(13p) &= 1 \\ \Rightarrow 9p^2 + 4p^2 + 169p^2 &= 1 \\ \Rightarrow p^2 &= \frac{1}{182} \\ \Rightarrow p &= \frac{1}{\sqrt{182}} \end{aligned}$$

Hence, option (d) is correct.

97. (b) The total number of cards in the deck is 52.

Number of aces in the deck = 4

There are 4 aces out of 52 cards.

$$\therefore \text{Probability of first ace} = \frac{4}{52}$$

Now, probability of drawing the second ace, without replacement (one ace has already been drawn) so,

Remaining cards = 51

Remaining aces = 3

$$\therefore \text{Probability of second ace} = \frac{3}{51}$$

∴ Probability of two aces is

$$P(2 \text{ aces}) = \frac{4}{52} \times \frac{3}{51} = \frac{1}{221}$$

Hence, option (b) is correct.

98. (a) Given that $AB = A$ and $BA = B$

Consider $B = BA = B(AB) \quad \{ \because AB = A \}$

$$= (BA) \cdot B = B \cdot B = B^2$$

$$\text{Thus, } B^2 = B$$

Hence, option (a) is correct.

99. (b) Given quadratic equation $x^2 - bx + 1 = 0$

It has no real roots, it means equation has imaginary roots, which is possible when $B^2 - 4AC < 0$

$$\text{Here, } B = -b, A = 1, C = 1$$

$$\Rightarrow b^2 - 4 < 0 \Rightarrow b^2 < 4 \Rightarrow -2 < b < 2$$

Hence, option (b) is correct.

100. (c) Consider $\begin{vmatrix} m & n & p \\ p & m & n \\ n & p & m \end{vmatrix}$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$

$$= \begin{vmatrix} m+n+p & n & p \\ p+m+n & m & n \\ n+p+m & p & m \end{vmatrix}$$

Take $m+n+p$ common from C_1 .

$$\begin{aligned} &= (m+n+p) \begin{vmatrix} 1 & n & p \\ 1 & m & n \\ 1 & p & m \end{vmatrix} \\ &= (m+n+p) [(m^2 + n^2 + p^2) - mn - np - pm] \end{aligned}$$

Hence, value of the determinant has linear factor.

Hence, option (c) is correct.

101. (c) $(a,b)R(c,d) \Leftrightarrow a+d = b+c$

$$(i) a+a = a+a$$

∴ $(a,a)R(a,a) \Rightarrow R$ is reflexive

$$(ii) (a,b)R(c,d) \Rightarrow a+d = b+c$$

$$(c,d)R(a,b) \Rightarrow c+b = d+a$$

∴ R is symmetric

(iii) Let $(a,b)R(c,d)$ and $(c,d)R(e,f)$

$$\begin{aligned}
 &\Rightarrow a+d=b+c \text{ and } c+f=d+e \\
 &\Rightarrow a+d+c+f=b+c+d+e \\
 &\Rightarrow a+f=b+e \\
 &\Rightarrow (a,b)R(e,f) \\
 \therefore R \text{ is transitive}
 \end{aligned}$$

From (i), (ii) and (iii) R is an equivalence relation.

Hence option (c) is correct.

102. (d) Equation of line passing through the points $(2,1,3)$ and $(4,-2,5)$ is

$$\begin{aligned}
 \frac{x-2}{4-2} = \frac{y-1}{-2-1} = \frac{z-3}{5-3} = \lambda \Rightarrow \frac{x-2}{2} = \frac{y-1}{-2} = \frac{z-3}{2} = \lambda \\
 \Rightarrow x = 2\lambda + 2, y = -3\lambda + 1 \text{ and } z = 2\lambda + 3
 \end{aligned}$$

Since, this line cuts the plane $2x+y-z=3$

So, $(2\lambda+2, -3\lambda+1, 2\lambda+3)$ satisfies the equation of the plane.

$$\therefore 2\lambda+2-3\lambda+1-2\lambda-3=3$$

$$\Rightarrow -3\lambda = 3 \Rightarrow \lambda = -1$$

Therefore, the points are given by

$$[2(-1)+2, -3(-1)+1, 2(-1)+3] = (0, 4, 1)$$

Hence, option (d) is correct.

103. (d) Let the ratio is $k:1$

$$\text{Then, } 0 = \frac{4k+2}{k+1} \Rightarrow 4k+2=0 \Rightarrow k = -\frac{1}{2}$$

$$\text{And } 4 = \frac{-2k+1}{k+1} \Rightarrow 4k+4 = -2k+1 \Rightarrow k = -\frac{1}{2}$$

Hence, the plane divides the line in the ratio $1:2$ externally.

Hence, option (d) is correct.

104. (c) For $2x^2 - 2(k-2)x + (k+1) = 0$

Let roots be α and β

$$\therefore \alpha + \beta = -2 \text{ and } \alpha\beta = -\frac{k+1}{2}$$

$$\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$\begin{aligned}
 &\Rightarrow \alpha^2 + \beta^2 = (k-2)^2 + (k+1) \\
 &\Rightarrow \alpha^2 + \beta^2 = k^2 - 4k + 4 + k + 1 \\
 &\Rightarrow \alpha^2 + \beta^2 = k^2 - 3k + 5 \\
 &\Rightarrow \alpha^2 + \beta^2 = \left(k - \frac{3}{2}\right)^2 + \left(5 - \frac{9}{4}\right)
 \end{aligned}$$

$$\text{For minimum value } k = \frac{3}{2}$$

Hence, option (c) is correct.

$$\begin{aligned}
 \text{105. (c) We have } r &= \sqrt{b_{xy} \cdot b_{yx}} \\
 &= \sqrt{\left(-\frac{1}{6}\right) \times \left(-\frac{3}{2}\right)} \\
 &= \sqrt{\frac{1}{2} \times \frac{1}{2}} = \pm \frac{1}{2}
 \end{aligned}$$

Since, b_{xy} and b_{yx} both have negative sign, therefore, we have to take the negative sign.

$$\text{Hence, correlation coefficient} = -\frac{1}{2}$$

Hence, option (c) is correct.

$$\text{106. (a) Let } A = \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix}, B = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Here $AB = C$

$$\therefore \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2(x+y) & -y \\ 4x & -x+y \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$2x+y=3 \quad \dots \text{(i)}$$

$$3x+y=2 \quad \dots \text{(ii)}$$

From equations (i) and (ii), we get

$$x = -1 \text{ and } y = 5$$

$$\therefore A = \begin{bmatrix} 4 & 5 \\ -2 & -6 \end{bmatrix}$$

$$\text{Now, } A^2 = \begin{bmatrix} 4 & 5 \\ -2 & -6 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ -2 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} 16-10 & 20-30 \\ -8+12 & -10+36 \end{bmatrix} = \begin{bmatrix} 6 & -10 \\ 4 & 26 \end{bmatrix}$$

Hence, option (a) is correct.

107. (d) We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$

$$\therefore |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta = 2 \times 3 \sin \theta = 6 \sin \theta$$

$$\text{And, } \therefore |\vec{a} \cdot \vec{b}| = |\vec{a}| |\vec{b}| \cos \theta = 2 \times 3 \cos \theta = 6 \cos \theta$$

$$\begin{aligned} \therefore |\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 &= (6 \sin \theta)^2 + (6 \cos \theta)^2 \\ &= 36(\sin^2 \theta + \cos^2 \theta) = 36 \end{aligned}$$

Hence, option (d) is correct.

108. (a) We have Mean = $(\bar{x}) = \frac{\sum x_i}{N}$

$$\text{Here, } \bar{x} = \frac{4+7+8+9+10+12+13+17}{8} = 10$$

$$\therefore \text{Mean deviation about mean} = \frac{\sum |x_i - \bar{x}|}{N}$$

$$\begin{aligned} &|4-10| + |7-10| + |8-10| + |9-10| + |10-10| \\ &= \frac{|12-10| + |13-10| + |17-10|}{8} \\ &= \frac{6+3+2+1+0+2+3+7}{8} \\ &= \frac{24}{8} = 3 \end{aligned}$$

Hence, option (b) is correct.

109. (a) Let x be the side of first square and y be the side of second square.

$$\therefore \text{Area of first square, } A_1 = x^2$$

$$\text{and, area of second square, } A_2 = y^2$$

$$\begin{aligned} &= (x+x^2)^2 \quad (\because y = x+x^2) \\ &= x^2 + x^4 + 2x^3 \end{aligned}$$

$$\text{Now, } \frac{dA_1}{dx} = 2x \text{ and } \frac{dA_2}{dx} = 2x + 4x^3 + 6x^2$$

Hence, the rate of change of area of the second square with respect to the area of the first square

$$= \frac{dA_2}{dA_1} = \frac{2x + 4x^3 + 6x^2}{2x} = 1 + 3x + 2x^2$$

Hence, option (a) is correct.

110. (b) The given curve is $y = e^x$

$$\text{Slope of the tangent} = \frac{dy}{dx} = e^x$$

$$\therefore \left(\frac{dy}{dx} \right)_{(0,1)} = e^0 = 1$$

Therefore, equation of tangent line is

$$y - y_0 = \frac{dy}{dx} (x - x_0)$$

$$\Rightarrow y - 1 = 1(x - 0)$$

$$\Rightarrow y - 1 = x$$

$$\Rightarrow y = x + 1$$

when tangent meet x -axis, y -coordinates becomes zero.

$$\therefore y = x + 1 \Rightarrow 0 = x + 1 \Rightarrow x = -1$$

Hence, the point is $(-1, 0)$

Hence option (b) is correct.

111. (a) Let angle between \vec{a} and \vec{b} be θ

$$|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos \theta}$$

$$10\sqrt{3} = \sqrt{49 + 121 + 2 \times 7 \times 11 \cos \theta}$$

$$300 = 170 + 154 \cos \theta$$

$$154 \cos \theta = 130$$

And,

$$\begin{aligned} |\vec{a} - \vec{b}| &= \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos \theta} \\ &= \sqrt{170 - 154 \cos \theta} \\ &= \sqrt{170 - 130} \\ &= \sqrt{40} = 2\sqrt{10} \end{aligned}$$

Hence, option (b) is correct.

112. (b) Given that $\text{cov}(x, y) = 30$ and $\text{var}(x) = 25$,

$$\text{var}(y) = 144$$

$$\Rightarrow r(x, y) = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x)} \cdot \sqrt{\text{var}(y)}}$$

$$\Rightarrow r(x, y) = \frac{30}{\sqrt{25} \cdot \sqrt{144}} = \frac{30}{5 \times 12} = 0.5$$

Hence, option (b) is correct.

113. (a) Given that $\vec{u} - \vec{v} = \vec{w}$

$$(2x\vec{\alpha} + y\vec{\beta}) - (2y\vec{\alpha} + 3x\vec{\beta}) = 2\vec{\alpha} - 5\vec{\beta}$$

$$(2x - 2y)\vec{\alpha} + (y - 3x)\vec{\beta} = 2\vec{\alpha} - 5\vec{\beta}$$

$$\therefore 2x - 2y = 2 \quad \dots \text{(i)}$$

$$\text{and, } 3x - y = 5 \quad \dots \text{(ii)}$$

Solving equation (i) and (ii), we get

$$x = 2 \text{ and } y = 1$$

Hence, option (a) is correct.

114. (b) We have $\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 = \left(\frac{1}{n} \sum_{i=1}^n x_i \right)^2$

$$= \frac{1}{n} (1^2 + 2^2 + 3^2 + \dots + n^2) - \left(\frac{1}{n} (1+2+3+\dots+n) \right)^2$$

$$= \frac{1}{n} \cdot \frac{n(n+1)(2n+1)}{6} - \left(\frac{1}{n} \cdot \frac{n(n+1)}{2} \right)^2$$

$$= \frac{n^2 - 1}{12}$$

$$\therefore \sigma = \sqrt{\frac{n^2 - 1}{12}}$$

Hence, option (b) is correct.

115. (a) Given that $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}|$

$$\text{Also, } |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot |\sin \theta|$$

$$\Rightarrow |\sin \theta| = \frac{8}{2 \times 5} = \frac{4}{5} \Rightarrow |\cos \theta| = \frac{3}{5} \Rightarrow \cos \theta = \pm \frac{3}{5}$$

$$\therefore \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \theta = 2 \times 5 \times \frac{3}{5} = 6$$

Hence, option (a) is correct.

116. (a) Let E_1, E_2, E_3 & A be events defined as follows.

E_1 = person chosen is a scooter driver.

E_2 = person chosen is a car driver.

E_3 = person chosen is a truck driver, and

A = person meets with an accident.

$$P(E_1) = \frac{2000}{12000} = \frac{1}{6}, P(E_2) = \frac{1}{3} \text{ & } P(E_3) = \frac{1}{2}$$

\therefore Probability that a person meets with an accident

$$\text{given that he is a scooter driver} = P\left(\frac{A}{E_1}\right) = 0.01$$

$$P\left(\frac{A}{E_2}\right) = 0.03 \text{ & } P\left(\frac{A}{E_3}\right) = 0.15$$

\therefore the person meets with an accident.

\therefore the probability that he was a scooter driver

$$\begin{aligned} P\left(\frac{E_1}{A}\right) &= \frac{P(E_1)P\left(\frac{A}{E_1}\right)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right)} \\ &= \frac{\frac{1}{6} \times 0.01}{\left(\frac{1}{6} \times 0.01\right) + \left(\frac{1}{3} \times 0.03\right) + \left(\frac{1}{2} \times 0.15\right)} \\ &= \frac{1}{52} \end{aligned}$$

Hence, option (a) is correct.

117. (b) The standard derivation = $\sqrt{\frac{(x - \bar{x})^2}{N}}$

Given data: $-\sqrt{6}, -\sqrt{5}, -\sqrt{4}, -1, 1, \sqrt{4}, \sqrt{5}, \sqrt{6}$

$$\Rightarrow \bar{x} = \frac{\text{sum of data}}{\text{Number of data}} = 0$$

$$\begin{aligned}
 (x - \bar{x})^2 &= (-\sqrt{6} - 0)^2 + (-\sqrt{5} - 0)^2 + (-\sqrt{4} - 0)^2 + \\
 &\quad (-1 - 0)^2 + (1 - 0)^2 + (\sqrt{4} - 0)^2 + (\sqrt{5} - 0)^2 \\
 &\quad + (\sqrt{6} - 0)^2 \\
 &= 6 + 5 + 4 + 1 + 1 + 4 + 5 + 6 \\
 &= 32 \\
 \therefore \text{S.D.} &= \sqrt{\frac{(x - \bar{x})^2}{N}} = \sqrt{\frac{32}{8}} = \sqrt{4} = 2
 \end{aligned}$$

Hence, option (b) is correct.

118. (a) Let P denote the probability of getting head in a single toss of a coin.

$$\therefore p = \frac{1}{2} \Rightarrow q = \frac{1}{2}$$

Let X denote the no of heads in 5 tosses of a coin. Then, X is a binomial variate with parameters;

$$n = 5 \text{ and } p = \frac{1}{2}$$

\therefore Required probability $= P(X > 3)$

$$\begin{aligned}
 &= 1 - P(X \leq 3) \\
 &= 1 - [P(x=0) + P(x=1) + P(x=2) + P(x=3)] \\
 &= 1 - [{}^5C_0 + {}^5C_1 + {}^5C_2 + {}^5C_3] \frac{1}{2^5} \\
 &= 1 - [1 + 5 + 10 + 10] \frac{1}{32} \\
 &= \frac{32}{32} - \frac{26}{32} = \frac{6}{32} = \frac{3}{16}
 \end{aligned}$$

Hence, option (a) is correct.

119. (c) The coefficient of correlation is independent of both change of scale and change of origin.

Hence, option (c) is correct.

120. (b) Here mean

$$\begin{aligned}
 &= \frac{21 + 34 + 23 + 39 + 26 + 37 + 40 + 20 + 33 + 27}{10} \\
 &= \frac{300}{10} = 30
 \end{aligned}$$

Mean deviation

$$\begin{aligned}
 &= \frac{|-9| + 4 + |-7| + 9 + |-4| + 7 + 10 + |-10| + 3 + |-3|}{10} \\
 &= \frac{66}{10} = 6.6
 \end{aligned}$$

\therefore Coefficient of mean deviation $= \frac{\text{Mean Deviation}}{\text{Mean}}$

$$= \frac{6.6}{30} = 0.22$$

Hence, option (b) is correct.