HINTS & SOLUTION

- 1. (b) (a + b) always represent a natural number $\forall a, b \in N$.
- 2. (c) Consider, $2, 4 \in N$ So, $\sqrt{4} = 2$, a natural number and $\sqrt{2} = \text{irrational number}$.
- **3.** *(b)* Difference of sums of even and odd places digit of 1254934

$$= (1+5+9+4) - (2+4+3)$$
$$= 19-9=10$$

This number will be divisible by 11, after adding x, if x = 1.

Also, the sum of digits of 1254934= 1 + 2 + 5 + 4 + 9 + 3 + 4 = 281254934 will be divisible by 3, after adding y, if y = -1

- **4.** (c) When we divide a positive integer by another positive integer, the resultant will be a rational number i.e. in the form of p/q, where p and q are positive integers and $q \neq 0$.
- (d) On division of (19)ⁿ by 20, we get remainder either 19 or 1.
 Since, last digit of (19)¹⁰⁰ is 1.

 \therefore Remainder of $\frac{(19)^{100}}{20}$ is 1.

6. (c) $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots n \text{ terms}$ $= \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{8}\right)$ $+ \dots + \left(1 - \frac{1}{2^n}\right)$ $= n - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}\right)$

$$= n - \frac{1}{2} \left(\frac{1 - (1/2)^n}{1 - 1/2} \right)$$
$$= n + 2^{-n} - 1$$

- 7. (b) When 'n' is even. Let n = 2m, then $= 1^{2} - 2^{2} + 3^{2} - 4^{2} + 5^{2} - \dots$ $= (1^{2} - 2^{2}) + (3^{2} - 4^{2}) + (5^{2} - 6^{2})$ $+ \dots + (2m - 1)^{2} - (2m)^{2}$ = (1 + 2) (1 - 1) + (3 + 4) (-1) $+ (5 + 6) (-1) + \dots$ + (2m - 1 + 2m) (-1) $= -(1 + 2 + 3 + 4 + \dots + 2m)$ $= \frac{-2m(2m + 1)}{2} = \frac{-n(n + 1)}{2}$
- 8. (b) HCF $\left(\frac{3}{2}, \frac{9}{7}, \frac{15}{14}\right)$ = $\frac{\text{HCF}(3, 9, 15)}{\text{LCM}(2, 7, 14)} = \frac{3}{14}$
 - $144 = 12 \times 2 \times 2 \times 3$

(d) Here, we know that

9.

and $192 = 12 \times 2 \times 2 \times 2 \times 2$

By taking option (d), $48 = 12 \times 2 \times 2$ Hence, the value of x will not be 48 otherwise the HCF of given numbers becomes 48.

10. (c) LCM of 11 and 13 will be (11 × 13). Hence, if a number is exactly divisible by 11 and 13, then the same number must be exactly divisible by their LCM i.e. (11 × 13).

11. (a)
$$175 \times 1.24 = 2.17$$

 $\Rightarrow 175 \times 124 = 217$

12. (d) Here,
$$\left[\frac{(0.1)^2 - (0.01)^2}{0.0001} + 1 \right]$$
$$= \frac{0.01 - 0.0001}{0.0001} + 1 = \left(\frac{0.0099}{0.0001} + 1 \right)$$
$$= (99 + 1) = 100$$

13. (c)
$$\frac{2}{5} = 0.4$$
, $\frac{5}{6} = 0.8\overline{3}$, $\frac{11}{12} = 0.91\overline{6}$
and $\frac{7}{8} = 0.875$

Clearly, the greatest fraction is 0.916 i.e. $\frac{11}{12}$.

14. (c) Given,
$$\sqrt{\frac{x}{49}} = \frac{4}{7}$$
 or $\frac{\sqrt{x}}{7} = \frac{4}{7}$

Now, on squaring both sides, we get $(\sqrt{x})^2 = (4)^2 \Rightarrow x = 16$

Hence, the value of x is 16.

15. (d) Since
$$15 = 3 \times 5 = 3 \times 6^{B}$$

As, $3 = \frac{6}{2} = \frac{6^{1}}{6^{A}} = 6^{1-A}$
 $\therefore 15 = 3 \times 6^{B} = 6^{1-A} \times 6^{B}$
 $\Rightarrow 6^{Q} = 6^{1-A} \times 6^{B}$
 $\Rightarrow 6^{Q} = 6^{1-A+B}$
 $\Rightarrow Q = 1 - A + B$

16. (c) Let the speed of two trains be x km/h and y km/h, respectively. Then, the time taken by first train to cover 110 km = Time taken by second train to cover 100 km.

Thus,
$$\frac{110}{x} = \frac{100}{y} \Rightarrow \frac{x}{y} = \frac{110}{100}$$

 $\therefore x : y = 11 : 10$

17. (a) Distance travelled by x in 15 min $= 60 \times \frac{15}{60} = 15 \text{ km}$

Distance travelled by y in 10 min

$$=48 \times \frac{10}{60} = 8 \text{ km}$$

Difference = (15 - 8) km = 7 km Hence, at 3:15 pm they are 7 km apart. So, statement I is true. As speed of x is greater than y. So, y will never overtake x. Thus, statement II is false.

- **18.** (a) Length of train = Distance covered in 40 s at the rate of 36 km/h.
 - $\therefore \text{ Length of train}$ $= 40 \times 36 \times \frac{5}{18} = 400 \text{ m}$
- 19. (b) Here, a = 40 days, b = 50 days, x = 20 and T = ? $\therefore \text{ Required time} = \frac{(b x) a}{a + b}$

$$= \frac{(50-20) \times 40}{(40+50)} = \frac{30 \times 40}{90}$$
$$= \frac{40}{3} = 13\frac{1}{3} \text{ days}$$

- **20.** (a) By given condition, $n \times 30 = n \times 10 + (n + 50) \times 16$ $\Rightarrow 20n = 16n + 800$ $\therefore n = \frac{800}{4} = 200$
- 21. (b) Let the sum (principal) be $\forall x$. \therefore Simple interest $= \forall \frac{x}{2}$ and T = 6 yr, R = 10% per annum \therefore SI $= \frac{P \times R \times T}{100}$ $\Rightarrow \frac{x}{2} = \frac{x \times 10 \times 6}{100} \Rightarrow \frac{1}{2} = \frac{6}{100}$

Which is not true, so it is not a possible case.

22. (a) Let the principal be $\not\in P$ As, amount = 3P and T = 25 yr

$$\therefore SI = 3P - P = 2P$$

$$\therefore Rate = \frac{100 \times SI}{principal \times T}$$

$$= \frac{100 \times 2P}{P \times 25} = 8\%$$

23. (c) As rate of interest is charged half yearly, So, rate = $\frac{13}{2}$ % half yearly time $\left(\frac{42}{12} \times 2\right)$ half yearly = 7 half yearly $\frac{20000 \times 12 \times 7}{20000 \times 12 \times 7}$

$$SI = \frac{20000 \times 12 \times 7}{100 \times 2} = ₹ 9100$$
∴ Amount(A) = 20000 × 9100
$$= ₹ 29100$$

24. (*d*) Let amount be \mathbb{Z} x and rate of interest is R % annually.

According to the questions,

Amount after 1st yr = ₹ 1200

$$x\left(1+\frac{R}{100}\right) = 1200$$
 ...(i)

Amount after 3^{rd} yr = ₹ 1587

$$x\left(1 + \frac{R}{100}\right)^3 =$$
 ₹ 1587 ...(ii)

On dividing Eq. (ii) by Eq. (i), we get

$$\left(1 + \frac{R}{100}\right)^2 = \frac{1587}{1200} = \frac{529}{400}$$
$$1 + \frac{R}{100} = \frac{23}{20} \Rightarrow \frac{R}{100} = \frac{3}{20}$$

$$\therefore R = 15\%$$

Put $R = 15\%$ in Eq. (i),

$$x\left(1 + \frac{15}{100}\right) = ₹ 1200$$

$$\Rightarrow x = \frac{1200 \times 100}{115}$$

 $\therefore x = \mathbf{\xi} \ 1043.478$

25. (a) Given, principal amount = ₹ P

Rate of interest, $R = \frac{r}{k}$ % per annum and

Time,
$$T = nk$$

$$\therefore A = P \left(1 + \frac{R}{100} \right)^{T}$$

$$\therefore A = P \left(1 + \frac{r}{100k} \right)^{nk}$$

- **26.** (c) Let selling price of 1 dozen pencil be $\mathfrak{F} x$.
 - ∴ Selling price of 8 dozen pencils = ₹ 8x and profit = ₹ x
 - ∴ Cost price of 8 dozen pencils = 8x - x = ₹7x

$$\therefore \text{ Gain, percent}$$

$$\frac{x}{7} \times 100\% = 14 \frac{2}{7}\%$$

27. (b) I. Let CP = xThen, $SP = \frac{213}{200}x$ If $SP = \frac{213}{200}x + 1250$, then gain = 19% $\frac{213x}{200} + 1250 - x$ $\Rightarrow 19 = \frac{x}{100} + 1250 - x + 100$ $\Rightarrow \frac{19x}{100} - \frac{213x}{200} = 1250$ $\Rightarrow x = 1250 \times 8 = 10000$ II. If $SP = \frac{213}{200}x + 2400$ and gain = 19% then

$$19 = \frac{\frac{213x}{200} + 2400 - x}{100} \times 100$$

$$\Rightarrow \frac{19x}{100} - \frac{13x}{200} = 2400$$

$$\Rightarrow x = 2400 \times 8 = 19200$$

Hence, I is correct but II is incorrect.

28. (c) CP of 1 lemon = $\frac{1}{2}$ SP of 1 lemon = $\frac{3}{5}$ ∴ Gain%

$$= \frac{\frac{3}{5} - \frac{1}{2}}{\frac{1}{2}} \times 100$$
$$= \frac{6 - 5}{10} \times 2 \times 100 = 20\%$$

29. (d) Given, list price of a video cassette = ₹ 100

Let the rate of discount be r %.

Selling price of 3 video cassette = ₹ 274.50

Selling price of 1 video cassette

$$= \underbrace{\frac{27450}{3}} = \underbrace{\$ 91.50}$$

$$\therefore 100 - \frac{r}{100} \times 100 = ₹ 91.50$$

$$\Rightarrow 100 - 91.50 = r$$

$$\Rightarrow 8.50 = r$$

 \therefore Rate of discount = 8.5%

30. (c) Let the number be x.

$$\therefore \frac{49+x}{68+x} = \frac{3}{4}$$

$$\Rightarrow$$
 196 + 4x = 204 + 3x

$$\therefore$$
 $x = 8$

31. *(b)* This is the solution with explanation for Let two numbers be 3x and 5x, respectively.

According to the question,

$$(3x-9): (5x-9):: 12: 23$$

$$\Rightarrow \frac{3x-9}{5x-9} = \frac{12}{23}$$

$$\Rightarrow 69x - 207 = 60x - 108$$
$$69x - 60x = 207 - 108$$

$$\Rightarrow 9x = 99$$

$$\therefore$$
 $x = 11$

 \therefore Second number = $5x = 5 \times 11 = 55$

32. (*d*) Let the amount be ξx .

In first condition, Q's part = $\frac{5x}{5+3} = \frac{5}{8}x$

In second condition, Q's part

By given condition,
$$\frac{5}{8}x - \frac{3}{5}x = \frac{3}{5}x$$

$$\Rightarrow \frac{x}{40} = 10 \Rightarrow x = 7400$$

33. (a)
$$\because \log_a \sqrt{2} = \frac{1}{6} \implies a^{1/6} = \sqrt{2}$$

 $\therefore a = (\sqrt{2})^6$

34. (b)
$$\frac{\log_{13}(10)}{\log_{169}(10)} = \frac{\log_{13}(10)}{\log_{13^2}(10)}$$
$$= \frac{\log_{13} 10}{\frac{1}{2}\log_{13} 10} \left[\because \log_{a^b} c = \frac{1}{b}\log_a c \right]$$
$$= \frac{1}{1/2} = 2$$

35. (d) Given,
$$x^4 + \frac{1}{x^4} = 322$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 - 2 = 322$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 = 324 = 18^2$$

$$\Rightarrow x^2 + \frac{1}{x^2} = 18$$

$$\Rightarrow \left(x - \frac{1}{x}\right)^2 + 2 = 18 \Rightarrow x - \frac{1}{x} = 4$$

- **36.** (a) $ax b = 0 \implies x = b/a$ By remainder theorem, if f(x) is divisible by ax - b, the remainder is f(b/a).
- 37. (d) We have, $x + \frac{1}{x} = 4$ I. $\left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3(x)$ $\times \left(\frac{1}{x}\right)\left(x + \frac{1}{x}\right)$ $(4)^3 = x^3 + \frac{1}{x^3} + 3(4)$ $64 - 12 = x^3 + \frac{1}{x^3} \Rightarrow x^3 + \frac{1}{x^3} = 52$ II. $x + \frac{1}{x} = 4 \Rightarrow x^2 - 4x + 1 = 0$ $x = \frac{4 \pm \sqrt{16 - 4 \times 1 \times 1}}{2 \times 1}$ $= \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$

38. (b)
$$x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$$

= $(x - y - z)^2 = (5 - 3 - 2)^2 = 0$
[: $x = 5$, $y = 3$ and $z = 2$]

39. (c) LCM =
$$\frac{\text{Product of expressions}}{\text{HCF}}$$
$$= \frac{a \times b}{1} = ab$$

40. (a) Since, (x + 4) is HCF, so it will divide both the expressions i.e. x = -4 will make each one zero.

$$\therefore 2(-4) + k(-4) - 12 = 0$$

$$\Rightarrow 32 - 12 = 4k$$

$$\therefore 20 = 4k \Rightarrow k = 5$$

- 41. (a) We know $\frac{a+2}{a+3} \frac{(a+1)}{(a+2)}$ $= \frac{(a+2)^2 (a+1)(a+3)}{(a+3)(a+2)}$ $= \frac{a^2 + 4 + 4a (a^2 + 4a + 3)}{a^2 + 5a + 6}$ $= \frac{1}{a^2 + 5a + 6}$
- **42.** (b) Given, pq + qr + rp = 0

$$\frac{p^2}{p^2 - qr} + \frac{q^2}{q^2 - rp} + \frac{r^2}{r^2 - pq}$$

$$= \frac{p^2}{p^2 + rp + pq} + \frac{q^2}{q^2 + pq + qr} + \frac{r^2}{r^2 + qr + rp}$$

$$= \frac{p^2}{p(p + r + q)} + \frac{q^2}{q(p + q + r)}$$

$$+ \frac{r^2}{r(p + q + r)}$$

$$= \frac{p + q + r}{p + q + r} = 1$$

43. (b) Given, $\frac{1}{x+1} + \frac{2}{y+2} + \frac{1009}{z+1009} = 1$

CDS MATHEMATICS PAPER 10

$$\Rightarrow \frac{1}{x+1} - 1 + \frac{2}{y+2} - 1 + \frac{1009}{z+1009} - 1$$

$$= 1 - 3$$

$$\Rightarrow -\frac{x}{x+1} - \frac{y}{y+2} - \frac{z}{z+1009} = -2$$

$$\therefore \frac{x}{x+1} + \frac{y}{y+2} + \frac{z}{z+1009} = 2$$

44. (d) Given,

$$\frac{1}{(1-a)(1-b)} + \frac{a^2}{(1-a)(b-a)}$$

$$-\frac{b^2}{(b-1)(a-b)}$$

$$= \frac{(b-a) + a^2(1-b) - b^2(1-a)}{(1-a)(1-b)(b-a)}$$

$$= \frac{b-a+a^2-a^2b-b^2+ab^2}{(1-a)(1-b)(b-a)}$$

$$= \frac{(b-a) + (a^2-b^2) + ab(b-a)}{(1-a)(1-b)(b-a)}$$

$$= \frac{1-a-b+ab}{1-b-a+ab} = 1$$

45. *(c)* A pair of linear equations in two variables has a unique solution if their graphs intersect in one point.

46. (a) Given,
$$px + q = 0$$
 and $rx + s = 0$

$$\Rightarrow x = \frac{-q}{p} \text{ and } x = \frac{-s}{r}$$
So, $\frac{-q}{p} = \frac{-s}{r} \Rightarrow ps = qr$

47. (d) Since, given system of equations x + 2y - 3 = 0 and 5x + ky + 7 = 0 has no solution.

Then,
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\therefore \quad \frac{1}{5} = \frac{2}{k} \neq \frac{-3}{7} \implies k = 10$$

48. (b) Three lines $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$ and $a_3x + b_3y + c_3 = 0$

which are non-parallel and non-collinear they have only one solution if they meet in a common point in this case these lines are called concurrent lines.

49. (c) $a^2b^2x^2 - (a^2 + b^2)x + 1 = 0$ $\Rightarrow a^2x(b^2x - 1) - 1(b^2x - 1) = 0$ $\Rightarrow (b^2x - 1)(a^2x - 1) = 0$ So, either $a^2x - 1 = 0 \Rightarrow a^2x = 1$ or $b^2x - 1 = 0$ or $b^2x = 1$ $\Rightarrow x = 1/a^2$ or $x = 1/b^2$

50. (b) Here, $\alpha + \beta = (1 + a^2)$ and $\alpha\beta = \frac{1}{2}(a^4 + a^2 + 1)$ $\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= (1 + a^2)^2 - (a^4 + a^2 + 1)$ $= 1 + a^4 + 2a^2 - a^4 - a^2 - 1$ $\therefore \alpha^2 + \beta^2 = a^2$

 $\Rightarrow x \le 2 \text{ or } x \ge 3$ $\Rightarrow x \in [-\infty, 2] \text{ or } [3, \infty]$ $\Rightarrow x \in [-\infty, 2] \cup [3, \infty]$

52. (b) $B - A = \{7, 8, 9, 12\} - \{2, 6, 8, 9\}$ = $\{7, 12\}$

- **53.** (a) $B \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$ $\Rightarrow B = \{3, 5, 9\}$ is the required smallest set
- **54.** (d) All sets are infinite set.
- **55.** (a) I. There are infinite points lie on a line segment so, it is an infinite set. II. Number of birds in zoo are countable so,

it is a finite set.

III. It is not a well-defined set. Hence, only I is correct.

56. (b) Angle traced by hour hand in 1 hr = 30° Angle traced by hour hand in 91 (91) $^{\circ}$

$$\frac{91}{12}$$
hrs = $\left(30 \times \frac{91}{12}\right)^{\circ} = 227^{\circ} 30'$

Angle traced by minute hand in $1 \text{min} = 6^{\circ}$ Angle traced by minute hand in

$$35 \text{ min} = (6 \times 35)^{\circ} = 210^{\circ}$$

- :. Required angle = $227^{\circ}30' 210^{\circ}$ = $17^{\circ}30'$
- 57. (b) $\csc^2 \theta 2 + \sin^2 \theta$ = $(\sin \theta - \csc \theta)^2$ Hence, it is always non-negative.
- 58. (b) Given, $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2$ $\therefore \sin^2 \theta + \cos^2 \theta = 2 \sin \theta \cos \theta$ $\Rightarrow \sin 2\theta = 1 = \sin 90^\circ$ $\Rightarrow 2\theta = 90^\circ$ $\Rightarrow \theta = 45^\circ$
- **59.** (a) The squares of the tangents of the angles 30° , 45° and 60° are in G.P.

⇒
$$\tan^2 30^\circ$$
, $\tan^2 45^\circ$, $\tan^2 60^\circ$ are in G.P. ⇒ $\left(\frac{1}{\sqrt{3}}\right)^2$, $(1)^2$, $(\sqrt{3})^2$ are in G.P. ⇒ $\frac{1}{3}$, 1, 3 are in G.P. which is true as $1^2 = \frac{1}{3} \times 3 \Rightarrow 1 = 1$ s

60. (d) I. $1^{\circ} = \frac{\pi}{180}$ radian $= \frac{3.14}{180} = 0.017$ = 0.02 radians (approx) which is less than 0.03 radians.

II.
$$1^{\circ} = \frac{180}{\pi}$$
 degree
$$= \frac{180}{3.14} = 57.32 \text{ degree}$$

which is greater than 45°. Hence, both statements are true.

- 61. $(c) \cos (180^{\circ} + A) + \cos (180^{\circ} + B) + \cos (180^{\circ} + C) + \cos (180^{\circ} + D)$ $= -\cos A - \cos B - \cos C - \cos D$ $= -\cos A - \cos B - \cos (180^{\circ} - A)$ $-\cos (180^{\circ} - B)$ $(\because A + C = B + D = 180^{\circ})$ $= -\cos A - \cos B + \cos A + \cos B = 0$
- **62.** (a) We know that, for $0^{\circ} < \theta < 90^{\circ}$, there exist only one θ such that $\sin \theta = a$.

63. (a)
$$\tan (45^{\circ} + x) = \frac{\tan 45^{\circ} + \tan x}{1 - \tan 45^{\circ} \tan x}$$

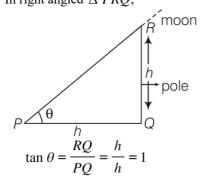
$$= \frac{1 + \tan x}{1 - \tan x}$$

$$\tan (45^{\circ} - x) = \frac{\tan 45^{\circ} - \tan x}{1 + \tan 45^{\circ} - \tan x}$$

$$= \frac{1 - \tan x}{1 + \tan x}$$

$$\frac{\tan (45^{\circ} + x)}{\tan (45^{\circ} - x)} = \frac{1 - \tan x}{\frac{1 - \tan x}{1 + \tan x}}$$
$$= \left[\frac{1 + \tan x}{1 - \tan x}\right]^{2}$$

64. (b) Let the height of pole be h m, then PQ = RQ = hIn right angled ΔPRQ ,

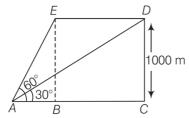


$$\Rightarrow \tan \theta = 1 = \tan 45^{\circ}$$

$$\theta = 45^{\circ}$$

Hence, the angle of elevation of moon is 45° .

65. (b) Let the radar base is at point A. The plane is at point D in the first sweep and at point E in the second sweep. The distance it covers in the one minute interval is DE.



From the figure,

In right angled
$$\triangle$$
 ADC, we get $\tan 30^{\circ} = \frac{DC}{AC} = \frac{1000}{AC} \Rightarrow AC = \frac{1000}{\tan 30^{\circ}}$ Similarly, in \triangle *EAB*, we get

 $\therefore \frac{\tan(1.5 + 3.7)}{\sin(1.5 + 3.7)} = \frac{1 + \tan 3.7}{\sin(1.5 + 3.7)} = \frac{1 + \tan 3$

$$\tan 60^{\circ} = \frac{EB}{AB} = \frac{1000}{AB} \Rightarrow AB = \frac{1000}{\tan 60^{\circ}}$$

Total distance covered by plane in 1 min, then

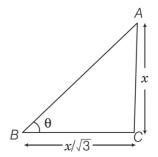
$$DE = AC - AB$$

$$DE = \frac{1000}{\tan 30^{\circ}} - \frac{1000}{\tan 60^{\circ}}$$
$$= 1000\sqrt{3} - \frac{1000}{\sqrt{3}}$$

= 1154.70 m

The speed of the plane is given by s = distance covered/time taken = DE / 60 = 19.25 m/s.

66. (c) Let θ be the angle of elevation,

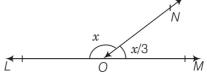


In right angled $\triangle ABC$,

$$\tan \theta = \frac{AC}{BC} = \frac{x}{x} = \frac{\sqrt{3}x}{x} = \sqrt{3}$$
Here, $\tan \theta = \sqrt{3} = \tan 60^{\circ}$

$$\therefore \theta = 60^{\circ} \left[\because \tan 60^{\circ} = \sqrt{3} \right]$$

67. (a) Given that, $\angle MON = \frac{1}{3} \angle LON$ Let $\angle LON = x$, then, $\angle MON = \frac{x}{3}$



We know that,

$$\angle LON + \angle MON = 180^{\circ}$$
 [linear pair]
 $\Rightarrow x + \frac{x}{3} = 180^{\circ} \Rightarrow x = \frac{180^{\circ} \times 3}{4} = 135^{\circ}$
thus, $\angle MON = \frac{x}{3} = \frac{135^{\circ}}{3} = 45^{\circ}$

- **68.** *(c)* Both the statements I and II are correct.
- **69.** (c) Let the other side be b and p. $\therefore \frac{1}{2}b \times p = 6 \Rightarrow b \times p = 12$

$$\Rightarrow b = \frac{12}{p}$$

Also, by Pythagoras theorem $h^2 = b^2 + p^2$

$$5^{2} = \left(\frac{12}{p}\right)^{2} + p^{2}$$

$$\Rightarrow 25 = \frac{144}{p^{2}} + p^{2}$$

$$25p^{2} = 144 + p^{4}$$

$$\Rightarrow p^4 - 25p^2 + 144 = 0$$

$$\Rightarrow p^4 - 16p^2 - 9p^2 + 144 = 0$$

$$\Rightarrow (p^2 - 9)(p^2 - 16) = 0$$

$$\Rightarrow p = 3 \text{ or } p = 4$$

Hence, other sides are 3 cm and 4 cm.

70. (d) In $\triangle POR$,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

$$\Rightarrow a + 3a + b = 180^{\circ}$$

$$\Rightarrow 4a + b = 180^{\circ}$$
 ...(i)

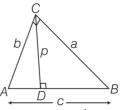
Given,
$$-5a + 3b = 30^{\circ}$$
 ...(ii)

Solving Eqs.(i) and (ii), we get $a = 30^{\circ}$ and $b = 60^{\circ}$

$$\therefore \angle P = 30^{\circ}, \angle Q = 90^{\circ} \text{ and } \angle R = 60^{\circ}$$

So, $\triangle PQR$ is right angled triangle.

71. (b) Since, c is the base and p is the altitude of \triangle ABC.



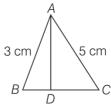
Here, area of $\triangle ABC = \frac{1}{2}pc$...(i)

Also, area of $\triangle ABC = \frac{1}{2}ab$...(ii)

From Eqs. (i) and (ii), we get

$$\frac{1}{2}pc = \frac{1}{2}ab \implies pc = ab$$

72. *(c)* We know that, The sum of any two sides of a triangle is greater than twice the median drawn to the third side.



i.e. (AB + AC) > 2AD

$$\Rightarrow$$
 $(3+5) > 2AD \Rightarrow AD < 4$

Hence, AD is always less than 4 cm.

73. (d) Number of diagonals of a polygon of

8 sides =
$$\frac{n(n-1)}{2} - n$$

= $\frac{8(8-1)}{2} - 8 = 20$

74. *(c)* By condition,

Interior angle of a regular polygon

Exterior angle a regular polygon

$$=\frac{5}{1}$$

$$\Rightarrow \frac{\frac{(n-2)}{n} \times 180^{\circ}}{\frac{360^{\circ}}{n}} = \frac{5}{1}$$

$$\Rightarrow \frac{(n-2)}{2} = \frac{5}{1}$$

$$\Rightarrow n-2 = 10 \Rightarrow n = 12$$

75. (*d*) Here,

$$\angle B = \angle C = 65^{\circ} \left[\because AB = AC \right]$$

$$A = B = AC$$

$$B = C$$

$$B = C$$

$$B = C$$

$$\angle 1 = \angle B = 65^{\circ}$$

(corresponding angles)

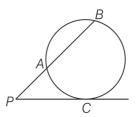
In \triangle FGD.

$$\angle 1 + \angle F + \angle D = 180^{\circ}$$

(by angle sum of property of a triangle)
⇒ 65° + 80° + ∠D = 180°
⇒ $\angle D = 35^{\circ}$

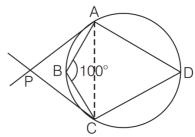
- **76.** (c) The perpendicular bisectors of the sides of a triangle passes through the same point. The perpendicular bisectors are concurrent and point is called the circumcentre.
- 77. (a) If a secant to a circle intersect circle at points A and B and PC is a tangent to circle, then

$$PC^2 = PA \times PB$$



which is equivalent to saying that area of rectangle with *PA* and *PB* as sides is equal to the area of square with *PC* as sides.

- **78.** (a) A line perpendicular to the given line, passing through the given point is the required locus.
- **79.** (b) We know that, the sum of opposite angles of a cyclic quadrilateral is always 180°.



$$\therefore \angle B + \angle D = 180^{\circ}$$

$$\Rightarrow 100 + \angle D = 180^{\circ} \Rightarrow \angle D = 180^{\circ}$$

∴
$$\angle ACP = \angle PAC = 80^{\circ}$$
 [by theorem of alternate interior segment] In $\triangle PAC$,

$$\angle P + \angle PAC + \angle PCA = 180^{\circ}$$

[by angle sum property of a triangle]
 $\Rightarrow \angle P + 80^{\circ} + 80^{\circ} = 180^{\circ}$
 $\Rightarrow \angle P = 180^{\circ} - 160^{\circ} = 20^{\circ}$

80. (b) The locus obtained is the circumference of the circle concentric with the given circle and having radius equal to the distance of the chords from the centre.

81. (c) Side of the greatest square tile
= GCM of the length and breadth of the room = GCM of 10.5 and 3 is 1.5 m

Area of room = $10.5 \times 3 \text{ m}^2$

 $\therefore \text{ Number of tiles needed}$ $= \frac{l \times b}{(\text{H.C.F of } l \& b)^2}$

$$=\frac{10.5\times3}{2.25}$$
 = 14 tiles

82. (a) Given, inner circumference $= 2\pi r = 440 \text{ m}$

$$\Rightarrow r = \frac{440}{2 \times 22} \times 7 = 70 \text{ m}$$

Width of track = 14 m

- \therefore Radius of outer circle = (70 + 14) m = 84 m
- ∴ Diameter of outer circle $= 2 \times 84 = 168 \text{ m}$
- 83. (c) Distance covered in one revolution $= \frac{11 \times 1000 \times 100}{5000} = 220 \text{ cm}$
 - ∴ The circumference of the wheel = 220 cm

Let the diameter be 'D'.

Then,
$$\pi D = 220 \Rightarrow \frac{22}{7} \times D = 220$$

:.
$$D = \frac{220 \times 7}{22} = 70 \text{ cm}$$

84. (d) I. Let R be the radius of circumcircle

Area of circumcircle = πR^2

II.
$$\frac{\Rightarrow 9\pi = \pi R^2 \Rightarrow R = 3 \text{ cm}}{\text{Circumradius of polygon}} = \frac{r}{R}$$

$$= \frac{\frac{1}{2}a\cot\left(\frac{180^{\circ}}{n}\right)}{\frac{1}{2}a\csc\left(\frac{180^{\circ}}{n}\right)} = \cos\left(\frac{180^{\circ}}{n}\right)$$
$$= r = R\cos\left(\frac{180}{12}\right)^{\circ} = 3\cos 15^{\circ}$$

85. (d) Given, diameter of circle = Side of square = 14 cm

$$\therefore r = 7 \text{ cm}$$

$$D$$

$$A \leftarrow 14 \text{ cm} \rightarrow B$$
Area of circle = $\pi r^2 = \frac{22}{7} \times 7 \times 7$

$$= 154 \text{ cm}^2$$

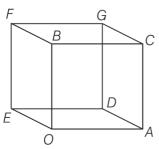
86. (c) Let radius of cylinder = x and radius of cone = 2xHeight of each = h

Required ratio = $\frac{\text{Volume of cone}}{\text{Volume of cylinder}}$

$$=\frac{\frac{1}{3}\pi 4x^2h}{\pi x^2h}=\frac{4}{3}=4:3$$

- 87. (b) Given, R = 3 cm, r = 2 cm, h = 10 cm Total surface area = $2\pi (R + r) (R + h - r)$ = $2\pi (3 + 2) (3 + 10 - 2) = 110 \pi \text{ cm}^2$
- **88.** (d) I. The distance between vertices B and C is 1 cm.

II. The distance between A and B is $\sqrt{1^2 + 1^2} = \sqrt{2}$ cm



III. The distance between vertices B and D is $\sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$ cm

Hence, the statements I and II, III are correct.

89. (d) Area of the field = Length \times Breadth = $12 \times 10 = 120 \text{ m}^2$

Area of the pit's surface = $5 \times 4 = 20\text{m}^2$ Area on which the Earth is to be spread = $120 - 20 = 100 \text{ cm}^2$

Volume of Earth dug out

$$= 5 \times 4 \times 2 = 40 \text{ cm}^3$$
Level of field raised =
$$\frac{40}{100} = \frac{2}{5} \text{ m}$$

$$= \frac{2}{5} \times 100 = 40 \text{ cm}$$

90. (d) Total surface area = Curved surface area of cylinder + Curved surface area of cone + Top surface area of cylinder

$$= 2\pi rh + \pi rl + \pi r^2 = \pi [2rh + r^2 + rl]$$
$$= \pi [2 \times 3 \times 4 + 3^2 + 3\sqrt{3^2 + 4^2}]$$
$$= 48\pi \text{ cm}^2$$

91. (a) Geometric mean of 40, 50 and x

$$= (40 \times 50 \times x)^{-1/3}$$

$$\Rightarrow (40 \times 50 \times x)^{-1/3} = 10 \quad \text{(given)}$$

$$\Rightarrow 40 \times 50 \times x = 10^{3}$$

$$\Rightarrow x = \frac{1000}{40 \times 50} = \frac{1}{2}$$

Hence, the value of x is $\frac{1}{2}$.

92. (b) Range of the data = 120 - 71 = 49 $\therefore \text{ Class size} = \frac{\text{Range}}{\text{Number of classes}}$ $= \frac{49}{7} = 7$

The class are 71-78, 78-85, 85-92, 92-97 etc.

So, limits of second class interval are 78 and 85.

- **93.** *(b)* Collar sizes of 200 shirts sold in a week, here mode is a suitable measure of central tendency.
- **94.** *(d)* The volume of rainfall in certain geographical area, recorded every month for 24 consecutive months.
- 95. (b) Given, $n_1 = 45$, $\overline{x}_1 = 2$, $n_2 = 40$ $\overline{x}_2 = 2.5 \text{ and } n_3 = 15, \overline{x}_3 = 2$ Required mean $= \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + n_3 \overline{x}_3}{n_1 + n_2 + n_3}$ $= \frac{45 \times 2 + 40 \times 2.5 + 15 \times 2}{45 + 40 + 15}$ $= \frac{90 + 100 + 30}{45 + 40 + 15} = \frac{220}{100} = 2.2$

Hence, the mean of the combined distribution is 2.2.

- **96.** (d) All statements are true.
- 97. (c) $\sqrt[3]{\sqrt{x}} = x/5$ On cubing both sides, we get $\sqrt{x} = x^3/5^3$

On squaring both sides, we get

$$x = x^6/5^6 \Rightarrow 5^6 = \frac{x^6}{x} = x^5$$
$$\Rightarrow x^5 = 5^6 \Rightarrow x = \sqrt[5]{5^6}$$

- 98. (a) $x^2 x 2 = 0$ $(x-2)(x+1) = 0 \implies x = 2, -1$ So, both the roots are integers.
- **99.** (a) Let S be the set of people who speak Spanish and F be the set of people who speak French

$$n(S) = 20, n(F)$$

$$= 50, n(S \cap F) = 10$$

$$\Rightarrow n(S \cup F) = n(S) + n(F) - n(S \cap F)$$

$$= 20 + 50 - 10 = 60$$

100.(d) I.
$$\sin \theta . \sin (60^{\circ} + \theta) . \sin (60^{\circ} - \theta)$$

$$= \sin \theta \left[\sin^{2} 60^{\circ} - \sin^{2} \theta \right]$$

$$= \sin \theta \left[\frac{3}{4} - \sin^{2} \theta \right]$$

$$= \frac{1}{4} \left[3 \sin \theta - 4 \sin^{3} \theta \right] = \frac{1}{4} \sin 3\theta$$
II. $\cos \theta . \sin (30^{\circ} + \theta) . \sin (30^{\circ} - \theta)$

$$= \cos \theta \left[\sin^{2} 60^{\circ} - \sin^{2} \theta \right]$$

$$= \cos \theta \left[\frac{1}{4} - (1 - \cos^{2} \theta) \right]$$

$$= \frac{1}{4} \left[4 \cos^{3} \theta - 3 \cos \theta \right] = \frac{1}{4} \cos 3\theta$$
III. $\sin \theta . \cos (30^{\circ} + \theta) . \cos (30^{\circ} - \theta)$

$$= \sin \theta \left[\cos^{2} 30^{\circ} - \sin^{2} \theta \right]$$

$$= \sin \theta \left[\frac{3}{4} - \sin^{2} \theta \right] = \frac{1}{4} \sin 3\theta$$
Hence, all three statements are correct.