## ANSWER KEY

| 1) c  | 2) a  | 3) b  | 4) c  | 5) b   |
|-------|-------|-------|-------|--------|
| 6) c  | 7) c  | 8) a  | 9) b  | 10) c  |
| 11) c | 12) a | 13) a | 14) c | 15) b  |
| 16) c | 17) a | 18) d | 19) d | 20) b  |
| 21) c | 22) d | 23) d | 24) a | 25) d  |
| 26) d | 27) d | 28) c | 29) b | 30) a  |
| 31) a | 32) a | 33) a | 34) a | 35) c  |
| 36) c | 37) b | 38) a | 39) c | 40) d  |
| 41) a | 42) d | 43) b | 44) a | 45) a  |
| 46) c | 47) b | 48) c | 49) c | 50) a  |
| 51) b | 52) a | 53) b | 54) c | 55) d  |
| 56) d | 57) b | 58) a | 59) d | 60) a  |
| 61) b | 62) c | 63) c | 64) b | 65) b  |
| 66) a | 67) d | 68) c | 69) a | 70) b  |
| 71) d | 72) b | 73) b | 74) c | 75) b  |
| 76) a | 77) a | 78) c | 79) d | 80) c  |
| 81) b | 82) c | 83) c | 84) a | 85) c  |
| 86) a | 87) a | 88) b | 89) a | 90) b  |
| 91) a | 92) c | 93) b | 94) c | 95) a  |
| 96) b | 97) b | 98) b | 99) c | 100) a |

## HINTS & SOLUTION

1. (c) : Dividend =  $D \times Q + R$ Given, D = 5Q and D = 2RWhen R = 15,  $D = 2 \times 15 = 30$  $\therefore Q = \frac{D}{5} = \frac{30}{5} = 6$ 

$$\therefore$$
 Dividend =  $30 \times 6 + 15 = 195$ 

- 2. (a)  $\frac{a}{4} = \frac{b}{5} = \frac{c}{6} = k$  (say)  $\Rightarrow a = 4k, b = 5k \text{ and } c = 6k$ So,  $\frac{a+b+c}{b} = \frac{4k+5k+6k}{5k}$  $\frac{15k}{5k} = 3$
- 3. (b) As, n is divided by 4 the remainder is 3, so n = 4q + 3, where q is quotient.  $\Rightarrow 2n = 8q + 6$   $\Rightarrow 2n = (8k + 4) + 2 = 4(2k + 1) + 2$ So, if 2n is divided by 4 the quotient is 2k + 1 and remainder is 2.
- 4. (c) I. If x = 15 and y = 14, then x + y = 15 + 14 = 29, which is a prime number. So, if x and y are composite, then x + y is not always composite.
  II. If x = 15 and y = 14, then x y = 15 14 = 1 which is neither prime nor

composite.

III. Third condition is satisfied for all measure. Hence, only III is correct.

composite, hence again x - y is not always

5. (b) Clearly, absolute value is defined by |x| = -x

6. (c) Middle term = 
$$T_{\frac{n+1}{2}}$$
  

$$\therefore a + \left(\frac{n+1}{2} - 1\right)d = m \quad \text{(given)}$$

$$2a + (n-1)d = 2m \quad \dots \text{(i)}$$
Now,  $S_n = \frac{n}{2} \left[2a + (n-1)d\right] = nm$ 

7. (c) Given, 
$$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$$

$$\Rightarrow \frac{1}{b-a} - \frac{1}{c} = \frac{1}{a} - \frac{1}{b-c}$$

$$\Rightarrow \frac{(c-b+a)}{c(b-a)} = \frac{(b-c-a)}{a(b-c)}$$

$$\Rightarrow \frac{1}{c(b-a)} = -\frac{1}{a(b-c)}$$

$$\Rightarrow ba - ca = -cb + ac$$

$$\Rightarrow ab + bc = 2ac$$

$$\therefore \qquad b = \frac{2ac}{a+c}$$
Hence,  $a, b, c$  are in HP.

8. (a) 
$$\frac{n}{2} [2 \times 3 + (n-1)2] = 7$$

$$\frac{10}{2} [2 \times 5 + (10-1) \times 3] = 7$$

$$\Rightarrow \frac{n(n+2)}{5 \times 37} = 7$$

$$\Rightarrow n^2 + 2n - 1295 = 0$$

$$\Rightarrow n^2 + 37n - 35n - 1295 = 0$$

$$\Rightarrow (n+37) (n-35) = 0$$

$$\vdots \qquad n = 35$$

9. (b) The numbers are 13x and 15x.So, x is the HCF. Now,HCF × LCM = Product of numbers

$$x \times 39780 = 13x \times 15x$$

$$\Rightarrow x \times 39780 = 13 \times 15 \times x^{2}$$

$$\Rightarrow x = \frac{39780}{13 \times 15} = 204$$

.. Numbers are  $13 \times 204 = 2652$  and  $15 \times 204 = 3060$ 

10. (c) I. Let 
$$a = 4$$
, and  $b = 10$   
∴  $a + b = 14$   
HCF  $(4, 10) = 2$   
and HCF  $(14, 10) = 2$   
∴ HCF  $(a,b) = \text{HCF } (a+b,b)$   
II. Let  $a = 6$  and  $b = 15$   
∴  $b - a = 15 - 6 = 9$   
HCF  $(6, 15) = 3$   
HCF  $(6, 9) = 3$   
∴ HCF  $(a,b) = \text{HCF } (a,b-a)$ 

11. (c) Required time = LCM of 42,56 and 63 s LCM of 42, 56 and 63 is

 $\therefore \text{ Required time}$ =  $2 \times 3 \times 7 \times 4 \times 3 = 504 \text{ s.}$ 

- **12.** (a) LCM of 6, 9 and 12 = 36
- **13.** *(a)* x = 15.9273 11.0049 = 4.9224

14. (c) 
$$\frac{3}{4} = 0.75, \frac{5}{6} = 0.833$$
  
 $\frac{1}{2} = 0.5, \frac{2}{3} = 0.66, \frac{4}{5} = 0.8$  and  $\frac{9}{10} = 0.9$   
Clearly, 0.8 lies between 0.75 and 0.8333.

$$\therefore \frac{4}{5}$$
 lies between  $\frac{3}{4}$  and  $\frac{5}{6}$ .

15. (b) 
$$\frac{0.004 \times 0.0008}{0.002} = \frac{0.0000032}{0.02}$$
$$= 0.00016$$

**16.** (c) Given expression =  $(11.98)^2 + (0.02)^2 + 11.98 \times x$ For the given expression to be a perfect square, we must have

11.98 × 
$$x = 2$$
 × 11.98 × 0.02  
⇒  $x = 0.04$   
[by using  $(a + b)^2 = a^2 + b^2 + 2ab$ ]

17. (a) 
$$N = 2^{0.15}$$
  
 $\Rightarrow N = (2)^{-3/20}$   
 $\Rightarrow (N)^{-b} = (2)^{-3b/20}$   
But,  $N^{b} = 16$   
 $\therefore 16 = (2)^{-3/20}$   
 $\Rightarrow 2^{4} = (2)^{-3b/20}$   
 $\Rightarrow 4 = \frac{3b}{20} \Rightarrow b = \frac{80}{2}$ 

**18.** (d) We know that,  $(42)^2 = 1764$  and  $(43)^2 = 1849$ Since, 1764 < 1780 < 1849Hence, the smallest number that must be added to 1780 is (1849 - 1780), i.e. 69.

19. (d) 
$$3\sqrt{5} + \sqrt{125} = 17.88$$
  
 $\Rightarrow 3\sqrt{5} + 5\sqrt{5} = 17.88$   
 $\Rightarrow 8\sqrt{5} = 17.88$   
 $\Rightarrow \sqrt{5} = \frac{17.88}{8} = 2.235$   
 $\therefore \sqrt{80} + 6\sqrt{5} = 4\sqrt{5} + 6\sqrt{5}$ 

$$= 10\sqrt{5} = 10 \times 2.235$$
$$= 22.35$$

**20.** (b) Total distance covered = 50 + 40 + 90= 180 km

Total time taken

$$= \left(\frac{50}{25} + \frac{40}{20} + \frac{90}{15}\right) = 10 \text{ h}$$

:. Average speed for the whole journey

$$= \frac{\text{Total distance travelled}}{\text{Total time taken}}$$
$$= \frac{180}{10} = 18 \text{ km/h}$$

∴ 
$$18 \text{ km/h} = \frac{18 \times 5}{18} \text{ m/s} = 5 \text{ m/s}$$

**21.** (c) I. Here, x = 20 km/h, y = 4 km/h,  $t_1 = 30 \text{ min}, t_2 = 10 \text{ min}$ 

According to formula,

... Required distance

$$= \left(t_1 - t_2\right)(x+y) \frac{x}{y}$$

$$= \frac{(30-10)}{60}(20+4)\left(\frac{20}{4}\right)$$

$$=\frac{20}{60} \times 24 \times \frac{20}{4} = 5 \times 8 = 40 \text{ km}$$

So, I is incorrect.

II. Here, x = 20 km/h, y = 10 km/h,  $t_1 = 30 \text{ min}, t_2 = 10 \text{ min}$ 

According to formula,

: Required distance

$$= \left(\frac{30-10}{60}\right)(20+10)\left(\frac{20}{10}\right)$$

$$= \frac{20}{60} \times 30 \times \frac{20}{10} = 20 \text{ km}$$

So, II is correct.

**22.** (d) Actual speed of boy = (p - q) km/h Time taken to cover 1 km =  $\frac{1}{n-a}$ 

$$\therefore \frac{1}{p-q} = r$$

$$\Rightarrow \frac{1}{r} = p - q$$

**23.** (d) Let the distance between P and Q = d km. Total time taken by Pranit  $=\frac{d}{10}+\frac{d}{15}=\frac{25d}{150}$ 

Total time taken by Harish.

$$= \frac{2d}{12.5} = \frac{4d}{25}$$

According to question,

$$\frac{25d}{150} - \frac{4d}{25} = \frac{12}{60}$$

$$\Rightarrow d \left[ \frac{25 - 24}{150} \right] = \frac{1}{5}$$

$$\Rightarrow \frac{d}{150} = \frac{1}{5} \Rightarrow d = 30 \text{ km}$$

**24.** (a) Let x km distance be covered in y h. Then, speed of object in first case

$$=\frac{x}{y}$$
 km/h

As, half of this distance is covered in double time.

Then, speed of object in second case

$$= \frac{x}{y} \div 2y = \frac{x}{2} \times \frac{1}{2y} = \frac{x}{4y} \text{ km/h}$$

:. Ratio of first and second speeds

$$=\frac{x}{y}:\frac{x}{4y}=1:\frac{1}{4}=4:1$$

**25.** (d) Distance travelled in 44 s =  $2\pi r$  $= 2 \times \frac{22}{7} \times 21 = 132 \text{ m}$ 

∴ Speed = 
$$\frac{132}{4}$$
 = 3 m/s
$$\left[ \because \text{ speed} = \frac{\text{distance}}{\text{time}} \right]$$

Time taken to travel 3 km = 
$$\frac{3000}{3}$$
  
= 1000 s =  $\frac{1000}{60}$  min

- $= 16 \min 40 s$
- 26. (d) I. 18 men can earn in 5 days = ₹ 1440 1 man can earn in 1 day = ₹  $\frac{1440}{18 \times 5}$

∴ 10 men can earn in 6 days
$$= \frac{1440}{18 \times 5} \times 6 \times 10$$

 $= 7960 \neq 1280$ 

II. 16 men can earn in 7 days = ₹ 1120  
1 man can earn in 1 day = 
$$\frac{1120}{16 \times 7}$$

∴ 21 men can earn in 4 days

$$= \frac{1120}{16 \times 7} \times 21 \times 4 = \$840 \neq \$800$$

So, neither statement I nor II is correct.

27. (d) 1 day work of 
$$A = \frac{1}{x}$$
  
1 day work of  $B = \frac{1}{3x}$ 

$$\therefore 1 \text{ day work of both } A \text{ and } B$$
$$= \frac{1}{x} + \frac{1}{3x} = \frac{4}{3x}$$

given, one day work of both A and B

$$= \frac{1}{12}$$

$$\Rightarrow \frac{4}{3x} = \frac{1}{12} \Rightarrow 3x = 48$$

$$\Rightarrow x = 16$$

Hence, the value of x is 16.

- **28.** (c) : One day work of Rajesh =  $\frac{1}{6}$ 
  - $\therefore$  One day work of Shailesh =  $\frac{1}{12}$

Hence, one day work of, Rajesh and Shailesh

$$= \frac{1}{6} + \frac{1}{12} = \frac{2+1}{12} = \frac{3}{12} = \frac{1}{4}$$

$$\therefore$$
 Two day's work =  $\frac{1}{2}$ 

Thus, if they work together for 2 day's, then half of the work will be complete.

- 29. (b) Given, x% of y = 13x  $\Rightarrow \frac{x}{100} y = 13x$  $\therefore y = 13 \times 100 = 1300$
- New fraction be  $\frac{x}{y}$ New fraction =  $\frac{120\% \text{ of } x}{90\% \text{ of } y} = \frac{4x}{3y}$ According to question,  $\frac{4x}{3y} = \frac{16}{27} \Rightarrow \frac{x}{y} = \frac{16}{27} \times \frac{3}{4} = \frac{4}{9}$
- **31.** (a) Let the total number of questions in examination be x.

By given condition, 40% of 
$$x = 10$$
  

$$\Rightarrow \frac{x \times 40}{100} = 10 \Rightarrow x = \frac{1000}{40} = 25$$

32. (a) Water in the mixture = 10% of 140 L =  $\frac{10}{100} \times 140 = 14 \text{ L}$ 

Let  $x \perp L$  of water added in the mixture, then

$$\left(\frac{14+x}{140+x}\right) \times 100 = 12.5$$

$$\Rightarrow 1400 + 100x = 1750 + 12.5x$$

$$\Rightarrow 87.5x = 350$$

## CDS MATHEMATICS PAPER 9

$$\Rightarrow x = \frac{350}{87.5} = 4L$$

33. (a) Let monthly income be  $\neq x$ 

$$\Rightarrow 87\frac{1}{2}\% \text{ of } x = ₹ 3500$$

$$\Rightarrow \frac{175}{2 \times 100} x = ₹ 3500$$

$$\therefore x = \frac{3500 \times 2 \times 100}{175} = \text{ } \text{ } \text{ } \text{ } \text{ } 4000$$

34. (a) The price of item first increased by 20% and then decreased by 20%.

$$= \left(20 - 20 + \frac{20 \times (-20)}{100}\right)$$
$$= \frac{-400}{100} = -4\%$$

**35.** (c) Glycerine in the given sample = 80% of

$$5 L = \frac{80}{100} \times 5 = 4L$$

Let x L of glycerine be added, then

$$\frac{4+x}{(5+x)} \times 100 = 95$$

$$\Rightarrow 80 + 20x = 95 + 19x$$

$$\therefore x = 15 L$$

**36.** (c) Let the sum be  $\xi x$ .

Then, 
$$\frac{x \times 13 \times 1}{100} - \frac{x \times 12 \times 1}{100} = 110$$
  
⇒  $\frac{x}{100} = 110$   
⇒  $x = 110 \times 100 = ₹11000$ 

37. (b) Let the amount of  $A = \xi a$ , time = 2 yr and rate = 5%

:. Simple Interest of

$$A = \frac{a \times 2 \times 5}{100} = \frac{10a}{100}$$

Let the amount of  $B = \mathbb{Z}$  b, rate = 5% and time = 3 yr.

∴ Simple interest of 
$$B = \frac{b \times 3 \times 5}{100} = \frac{15b}{100}$$

Let the amount of  $C = \mathbb{Z}$  c, time = 4 yr and rate = 5%

:. Simple interest of

$$C = \frac{c \times 4 \times 5}{100} = \frac{20c}{100}$$
But  $\frac{a \times 10}{100} = \frac{b \times 15}{100} = \frac{c \times 20}{100}$ 

⇒ 
$$10a = 15b = 20c = k$$
  
So,  $a = \frac{k}{10}$ ,  $b = \frac{k}{15}$ ,  $c = \frac{k}{20}$ 

$$\therefore a:b:c = \frac{1}{10}:\frac{1}{15}:\frac{1}{20}$$

**38.** (a) Given, P = 3 400, R = 5% and T = 3 yr

Simple interest = 
$$\frac{P \times R \times T}{100}$$
$$SI = \frac{400 \times 3 \times 5}{100} = ₹60$$

∴ Amount = 
$$P + SI = 400 + 60 = ₹460$$

**39.** (c) Here, rate of interest

$$=3\frac{1}{8}\% = \frac{25}{8}\%$$

Let principal be  $\xi x$ .

and simple interest  $= \frac{3}{2}x$ 

$$\therefore \frac{3}{8}x = \frac{x \times \frac{25}{8} \times T}{100}$$

$$\Rightarrow \frac{300}{25} = T \Rightarrow T = 12 \text{ yr}$$

**40.** (d) Let the person invest amount x and y into two different rates of interest.

**41.** (a) Given, P = ₹ 24000, R = 5% per annum and n = 3 yr

$$A = P \left( 1 - \frac{R}{100} \right)^n$$

$$= 24000 \left( 1 - \frac{5}{100} \right)^3$$

$$= 24000 \left( \frac{95}{100} \right)^3$$

$$= ₹ 20577$$

**42.** (*d*) I. Given, R = 4%, n = 2 yr and A = ₹ 169, P = ? $A = P \left( 1 + \frac{R}{100} \right)^n$ 

$$169 = P\left(1 + \frac{4}{100}\right)^2$$

$$\Rightarrow 169 = P\left(\frac{26}{25}\right)^2$$

II. Given, SI = ₹ 120, n = 2 yr

and CI = ₹ 129

$$SI = \frac{P \times R \times T}{100}$$

$$120 = \frac{P \times R \times 2}{100} \Rightarrow PR = \text{ } 6000$$

$$\therefore P = \frac{6000}{R} \qquad \dots \text{(i)}$$

$$\therefore P = \frac{6000}{R} \qquad \dots (i)$$

$$CI = P\left[\left(1 + \frac{R}{100}\right)^{n} - 1\right]$$

$$129 = P\left[\left(1 + \frac{R}{100}\right)^{2} - 1\right]$$

$$1290000 = P\left[\left(100 + R\right)^{2} - 100^{2}\right]$$

$$= P\left[R^{2} + R \times 200\right]$$

$$= \frac{6000}{R}\left[R^{2} + R \times 200\right]$$
[from eqn (i)]
$$1290000 = 6000R + 1200000$$

$$R = \frac{90000}{6000} = 15\%$$

Hence, both statement are correct.

43. (b) Give, CI = ₹832, SI = ₹800, n = 2 yr

$$CI = P\left\{\left(1 + \frac{R}{100}\right)^{2} - 1\right\}$$
∴ 832 =  $P\left\{\left(1 + \frac{R}{100}\right)^{2} - 1\right\}$  ...(i)

Also,  $SI = \frac{P \times R \times T}{100}$ 

$$\Rightarrow 800 = \frac{P \times R \times T}{100}$$

$$\Rightarrow P = \frac{40000}{R}$$
From Eq. (i),
$$832 = \frac{40000}{R} \left(\frac{R^{2}}{10000} + \frac{2R}{100}\right)$$

$$\Rightarrow 832 = \frac{40000}{100} \left(\frac{R}{100} + 2\right)$$

$$\Rightarrow 832 = 4R + 800$$
∴  $R = \frac{32}{4} = 8\%$ 

**44.** (a) Given, selling price of article
$$= ₹ 247.50 \text{ and gain} = \frac{25}{2} \%$$

$$\therefore \text{ Cost price}$$

$$= \text{ } \left\{ \frac{100}{\left(100 + \frac{25}{2}\right)} \times 247.50 \right\}$$

$$= \text{ } \left\{ \frac{100 \times 2 \times 247.50}{225} = \text{ } 220 \right\}$$

45. (a) To calculate overall percentage is:

Overall % = 
$$\frac{Gain \% \times Loss \%}{100}$$

Gain% = 20%

Loss% = 20%

Substituting,

Overall Loss% =  $\frac{20 \times 20}{100}$  = 4%

Thus the man incurs a loss of 4%.

46. (c) Let marked price be ₹ x.  
Selling price after 5% discount
$$= x - \frac{5}{100}x = \frac{19}{20}x$$
Profit = SP - CP =  $\frac{19}{20}x - 380$ 
Profit % =  $\frac{\frac{19}{20}x - 380}{380} \times 100$ 

$$25 = \frac{\frac{19}{20}x - 380}{380} \times 100$$

$$x = 475 \times \frac{20}{19} = ₹500$$

47. (b) Given, cost of article = ₹ 200  
Selling price of article = 95% of (90% of 200)  

$$= \frac{95}{100} \times \frac{90}{100} \times 200 = ₹ 171$$

∴ Profit = 12.5% of 238  
= 
$$\frac{12.5}{100} \times 238 = ₹ 29.75$$

Let he added *x* L of water.

$$\therefore \text{ Profit} = x \times 8.5 \Rightarrow 29.75 = x \times 8.5$$

$$\therefore x = 3.5L$$

49. (c) Let the cost price be 
$$\notin x$$
.

Marked price =  $\frac{x \times 100}{100} = \notin \frac{11x}{10}$ 

$$\therefore SP = \frac{11x}{10} \times \frac{90}{100} = \frac{99x}{100}$$

$$\therefore \text{ Required gain/loss per cent}$$

$$= \frac{99x}{100} - x$$

$$= \frac{99x}{100} \times 100 = -1\%$$

50. (a) Given, 
$$x : y = 1: 3$$
,  $y : z = 5: k$ ,  

$$z : t = 2: 5 \text{ and } t : x = 3: 4$$

$$\frac{x}{y} \times \frac{y}{z} \times \frac{z}{t} \times \frac{t}{x} = 1$$

$$\Rightarrow \frac{1}{3} \times \frac{5}{k} \times \frac{2}{5} \times \frac{3}{4} = 1$$

$$\Rightarrow k = \frac{1}{2}$$

51. (b) Speed 
$$\propto \frac{1}{Time}$$
  
∴ Required ratio
$$= \frac{1}{4} : \frac{1}{3} : \frac{1}{3} = 3 : 4 : 6$$

52. (a) Let the number of coins of ₹ 1, 50 paise and 10 paise be 3x, 8x and 10x, respectively According to the question,  $\frac{3x}{1} + \frac{8x}{2} + \frac{10x}{10} = 112$ 

$$\Rightarrow 3x + 4x + x = 112$$

$$\Rightarrow x = \frac{112}{8} = 14$$

:. Number of 50 paise coins  $= 14 \times 8 = 112$ 

53. (b) As 
$$x \propto \frac{1}{y^2} \Rightarrow x = \frac{k}{y^2}$$
 ...(i)

If  $x = 1$  and  $y = 6$ 

$$1 = \frac{k}{6^2} \Rightarrow k = 36$$

On putting the value of k in Eq. (i), we get  $x = \frac{36}{v^2}$  ...(ii)

I. On putting 
$$y = 3$$
 in Eq. (ii),  $x = \frac{36}{9}$ 

II. On putting y = 6 in Eq. (ii), we get  $x = \frac{36}{36} = 1$  x = 1

Both statements I and II are correct.

- 54. (c) Fresh grapes contain 10% pulp. ∴ 20 kg fresh grapes contain 2 kg pulp. Dry grapes contain 80% pulp. 2 kg pulp would contain  $\frac{2}{0.8} = \frac{20}{8} = 2.5 \text{ kg dry grapes}$
- 55. (d)  $\left[\log_{10} \left(5 \log_{10} 100\right)\right]^2$   $= \left[\log_{10} \left(5 \log_{10} 10^2\right)\right]^2$   $= \left[\log_{10} \left(10 \log_{10} 10\right)\right]^2$   $= \left[\log_{10} 10\right]^2 \quad \left[\because \log_{10} 10 = 1\right]$  $= 1^2 = 1$
- **56.** (d) The characteristic in  $\log 6.7482 \times 10^{-5}$  is -5.
- **57.** (b)  $10^{\log_{10}m + 2\log_{10}n + 3\log_{10}p}$

$$= 10^{\log_{10} m + \log_{10} n^2 + \log_{10} p^3}$$

$$\Rightarrow 10^{\log_{10} mn^2 p^3 = mn^2 p^3}$$

$$\left[ \because a^{\log_a p} = p \right]$$

**58.** (a) 
$$8-4x-2x^3+x^4=4(2-x)-x^3(2-x)$$
  
=  $(2-x)(4-x^3)$ 

**59.** (d) :: 
$$(a+b+c)^2 = a^2+b^2+c^2+2$$
  
 $(ab+bc+ca)$   
∴  $(6)^2=26+2(ab+bc+ca)$   
⇒  $2(ab+bc+ca) = 10$   
⇒  $ab+bc+ca = 5$ 

**60.** (a) 
$$x^4 + 4y^4$$
  

$$= x^4 + 4y^4 + 4x^2y^2 - 4x^2y^2$$

$$= (x^2 + 2y^2)^2 - (2xy)^2$$

$$= (x^2 + 2y^2 - 2xy)$$

$$(x^2 + 2y^2 + 2xy)$$

From above it is clear that  $x^4 + 4y^4$  is divisible by  $x^2 + 2y^2 + 2xy$ 

61. (b) 
$$x^{3/2} - xy^{1/2} + x^{1/2}y - y^{3/2}$$
  

$$= x(x^{1/2} - y^{1/2}) + y(x^{1/2} - y^{1/2})$$

$$= (x^{1/2} - y^{1/2})(x + y)$$

$$\Rightarrow \text{ Quotient}$$

$$= \frac{(x^{1/2} - y^{1/2})(x + y)}{(x^{1/2} - y^{1/2})} = x + y$$

- **62.** (c) Given, f(x) and g(x) vanish at x = 1/2So, (2x - 1) is a factor of f(x) and g(x) both. Hence, HCF of f(x) and g(x) = 2x - 1
- **63.** (c) We know that, (x + y) and (x y) are the factors of  $(x^{10} y^{10})$ .

**64.** (b) 
$$4y^4x - 9y^2x^3 = y^2x(4y^2 - 9x^2)$$

= 
$$y^2x(2y-3x)(2y+3x)$$
  
 $4y^2x^2 + 6yx^3 = 2yx^2(2y+3x)$   
 $\therefore$  Required HCF =  $xy(2y+3x)$ 

- 65. (b) Since, HCF of  $x^2 + x 12$  and  $2x^2 kx 9$  is (x k), then (x k) will be the factor of  $2x^2 kx 9$ .  $\therefore 2x^2 - kx - 9 = 0$   $\Rightarrow k^2 - 9 = 0$   $\Rightarrow k = \pm 3$ and factor of  $2x^2 - kx - 9$  are (x + 4)(x - 3). Hence, value of k is 3.
- **66.** (a) Here,  $\frac{x^3 + 3x^2 1}{x^2 + \sqrt{x 1}}$  is not rational expression, since the denominator is not a polynomial.
- 67. (d) Given,  $x + y + z = 0 \Rightarrow x + y = -z$ . On squaring both sides, we get  $x^{2} + y^{2} + 2xy = z^{2}$ Similarly,  $y^{2} + z^{2} - x^{2} = -2yz$  are  $z^{2} + x^{2} - y^{2} = -2zx$   $\therefore \frac{1}{x^{2} + y^{2} - z^{2}} + \frac{1}{y^{2} + z^{2} - x^{2}}$   $= \frac{1}{-2xy} + \frac{1}{-2yz} + \frac{1}{-2zx}$   $= \frac{1}{2} \left( \frac{z + x + y}{xyz} \right) = 0$
- **68.** (c) Given equations are,  $\alpha x + 3y = \alpha 3$  and  $12x + \alpha y = \alpha$

Here, 
$$a_1 = \alpha$$
,  $b_1 = 3$ ,  $c_1 = \alpha - 3$   
 $a_2 = 12$ ,  $b_2 = \alpha$ ,  $c_2 = \alpha$   
Since, system has unique solution,  
So,  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow \frac{\alpha}{12} \neq \frac{3}{\alpha}$   
 $\Rightarrow \alpha^2 \neq 36 \Rightarrow \alpha \neq \pm 6$ 

- **69.** (a) Given,  $ax^2 2\sqrt{5}x + 4 = 0$  has equal roots.
  - $\therefore \text{ Discriminant}$   $= \left(-2\sqrt{5}\right)^2 4(a) \cdot 4 = 0$   $\left[\because D = B^2 4AC\right]$   $\Rightarrow 20 16a = 0 \Rightarrow a = 5/4$
- 70. (b) Let roots of equation be  $\alpha$  and  $\frac{1}{\alpha}$ .  $\therefore$  Product of roots  $= \alpha \times \frac{1}{\alpha} = \frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{r}{p}$   $\Rightarrow 1 = \frac{r}{p} \Rightarrow r = p$
- 71. (d) Given,  $\alpha + \beta = 24$  and  $\alpha \beta = 8$ On solving, we get  $\alpha = 16$  and  $\beta = 8$ Sum of roots =  $\alpha + \beta = 24$ and product of roots =  $16 \times 8 = 128$ So, required equation is  $x^2 - 24x + 128 = 0$
- 72. (b) Given,  $2x^2 3x 4 = 0$ For getting a reciprocal roots, we replace x by  $\frac{1}{x}$ , we get  $2\left(\frac{1}{x}\right)^2 - 3\left(\frac{1}{x}\right) - 4 = 0$   $\Rightarrow \frac{2}{x^2} - \frac{3}{x} - 4 = 0$

$$\Rightarrow -4x^2 - 3x + 2 = 0$$
$$\Rightarrow 4x^2 + 3x - 2 = 0$$

73. (b) Here, 
$$\alpha + \beta = b/a$$
 and  $\alpha\beta = b/a$   
So,  $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} = \frac{b/a}{\sqrt{b/a}}$ 
$$= \sqrt{\frac{b}{a}}$$

74. (c) Given, 
$$\log_{10} (x^2 - 6x + 45) = 2$$
  

$$\Rightarrow (x^2 - 6x + 45) = 10^2 = 100$$

$$\Rightarrow x^2 - 6x - 55 = 0$$

$$\Rightarrow x^2 - 11x + 5x - 55 = 0$$

$$\Rightarrow x(x - 11) + 5(x - 11) = 0$$

$$\Rightarrow (x + 5) (x - 11) = 0$$

$$\therefore x = 11, -5$$

75. (b) 
$$\frac{1}{2} \left( \frac{3}{5}x + 4 \right) \ge \frac{1}{3} (x - 6)$$
  

$$\Rightarrow \frac{3}{10}x + 2 \ge \frac{1}{3}x - 2$$

$$\Rightarrow 9x + 60 \ge 10x - 60$$

$$\Rightarrow -x \ge -120$$
[multiplying both sides by -1]
$$\Rightarrow x \le 120$$
Thus, all real numbers  $x$  which

Thus, all real numbers x which are less than or equal to 120 satisfies the inequality.

**76.** (a) 
$$A \cup B = \{5, 6, 7\} \cup \{7, 8, 9\}$$
  
=  $\{5, 6, 7, 8, 9\}$ 

77. (a) Clearly, 
$$A \cap (A \cup B) = A$$

79. (d) 
$$\{x : x \text{ is an integer and less than } 1000\} = [..., 998, 999]$$
  
i.e.  $x \in (-\infty, 1000)$  is an infinite set.

80. 
$$(c) n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
  
 $\therefore n(A \cap B) = n(A) + n(B) - n(A \cup B)$   
 $= 17 + 23 - 38 = 2$ 

81. (b) 
$$\cos 15^{\circ} - \sin 15^{\circ} = \cos 15^{\circ}$$
  
 $- \sin (90^{\circ} - 75^{\circ})$   
 $= \cos 15^{\circ} - \cos 75^{\circ}$   
 $= 2 \sin \frac{15^{\circ} + 75^{\circ}}{2} \cdot \sin \frac{75^{\circ} - 15^{\circ}}{2}$   
 $\left(\because \cos C - \cos D = 2 \sin \frac{C + D}{2} \sin \frac{D - C}{2}\right)$   
 $= 2 \sin 45^{\circ} \cdot \sin 30^{\circ}$   
 $= 2 \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{\sqrt{2}}$ 

82. (c) :: Given, 
$$\tan \theta + \frac{1}{\tan \theta} = 2$$

On squaring both side, we get
$$\left(\tan \theta + \frac{1}{\tan \theta}\right)^2 = (2)^2$$

$$\Rightarrow \tan^2 \theta + \frac{1}{\tan^2 \theta} + 2 = 4$$

$$\Rightarrow \tan^2 \theta + \frac{1}{\tan^2 \theta} = 2$$

83. (c) Given, 
$$x = y \cos \frac{2\pi}{3} = z \cos \frac{4\pi}{3}$$
  

$$\Rightarrow x = \frac{-y}{2} = \frac{-z}{2} = k \text{ (let)}$$

$$x = k, \ y = -2k, \ z = -2k$$

$$\Rightarrow xy + yz + zx = k(-2k) + (-2k)(-2k)$$

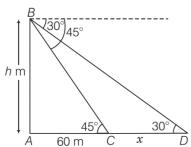
$$+ (-2k)k$$

$$= -2k^2 + 4k^2 - 2k^2 = 0$$

84. (a) : 
$$A + B + C + D = 360^{\circ}$$
  
:  $A + B = 360^{\circ} - (C + D)$   
:  $\sin(A + B) = \sin[360^{\circ} - (C + D)]$   
 $= -\sin(C + D)$   
:  $\sin(A + B) + \sin(C + D) = 0$   
Also,  
 $\cos(A + B) = \cos[360^{\circ} - (C + D)]$   
 $\cos(A + B) = \cos(C + D)$   
Hence, only statement I is correct.

85. (c) 
$$\cos 4x = 1 - 2\sin^2 2x$$
  
=  $1 - 2(2 \sin x \cos x)^2$   
=  $1 - 2(4\sin^2 x \cos^2 x)$   
=  $1 - 8 \sin^2 x \cos^2 x$ 

**86.** (a) Let height of tower AB be h m and distance between C and D be x m.



In right angled 
$$\triangle ACB$$
,  $\tan 45^\circ = \frac{AB}{AC}$   
 $\Rightarrow 1 = \frac{h}{60} \Rightarrow h = 60 \text{ m}$  ...(i)

Now, in right angled  $\triangle ADB$ ,  $\tan 30^{\circ} = \frac{AB}{AD} = \frac{AB}{AC + CD}$   $= \frac{60}{60 + x}$ [from Eq. (i)]

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{60}{60 + x}$$

$$\Rightarrow 60 + x = 60\sqrt{3}$$

$$\Rightarrow x = 60(\sqrt{3} - 1) = 60(1.73 - 1)$$

$$= 60 \times 0.73 = 43.8 \text{ m}$$
Now, given time = 5 s

We know that, Speed =  $\frac{\text{Distance}}{\text{Time}}$ 

$$\therefore \text{Speed of boat}$$

$$= \frac{43.8}{5} \times \frac{18}{5} = \frac{788.4}{25}$$

$$= 31.5 \text{ km/h}$$

$$\Delta PBT, \tan 45^{\circ} = \frac{h}{y}$$
⇒  $1 = \frac{h}{y}$ 

$$A = \frac{h}{y}$$

$$A = \frac{h}{y}$$

$$A = \frac{h}{30^{\circ}} + \frac{45^{\circ}}{45^{\circ}}$$

$$A = \frac{h}{x} + \frac{h}{y} + \frac{h}{y}$$
∴  $y = h$  ...(i)
and in right angled  $\Delta PTA$ ,
$$\tan 30^{\circ} = \frac{h}{x} \Rightarrow x = \sqrt{3}h \quad ...(ii)$$
∴ Required distance,  $AB = x + y$ 

$$x + y = \sqrt{3}h + h = h(\sqrt{3} + 1) \text{ m}$$

87. (a) In right angled

88. (b) Given, angle = 
$$\frac{3}{5}$$
 of right angle  
=  $\frac{3}{5} \times 90^{\circ} = 3 \times 18^{\circ} = 54^{\circ}$   
Supplement of  $54^{\circ} = (180^{\circ} - 54^{\circ})$   
= An angle of measure  $126^{\circ}$ 

- **89.** (a) Only statements I and II are true.
- **90.** (b) Let the angles of a triangle be 2x, 3x, 4x, then  $2x + 3x + 4x = 180^{\circ}$  [by angle sum property of a triangle]

$$9x = 180^{\circ} \Rightarrow x = 20^{\circ}$$

So, angles are  $2x = 40^{\circ}$ ,

$$3x = 60^{\circ}$$
,  $4x = 80^{\circ}$ .

**91.** (a) In  $\triangle$  DCX, CD = CX [given]

$$\angle 3 = \angle 4$$

[opposite angle of same sides]

But 
$$\angle 3 = \angle 5$$
, So,  $\angle 4 = \angle 5$ 

In  $\triangle ABD$  and  $\triangle ACX$ .

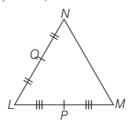
$$\angle 1 = \angle 2$$
 [given]

$$\therefore \quad \Delta ABD \sim \Delta ACX$$
 [by AA similarity]

- **92.** (c) I. It is true that the three medians of a triangle divide it into six triangles of equal area.
  - II. It is also true that, the perimeter of a triangle is greater than the sum of the lengths of its three medians.

Hence, I and II are correct.

**93.** (b) Given,



I. 
$$PQ^2 = MP^2 + NQ^2$$

$$\Rightarrow PQ^2 = LP^2 + LQ^2$$

$$[:: LP = MP \text{ and } NQ = LQ]$$

$$\Rightarrow \angle OLP = 90^{\circ}$$

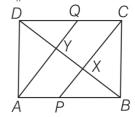
It means,  $\triangle NLM$  is a right-angled triangle.

II. It also true that if in a  $\triangle ABC$ .  $AB^2 > BC^2 + CA^2$ , then  $\angle ACB$  is obtuse.

Hence, both statements are individually true but statement II is not the correct explanation of statement I.

**94.** (c) As ABCD is a ||gm

$$\therefore AB||DC \text{ and } AB = DC$$



and 
$$\frac{1}{2}AB = \frac{1}{2}DC$$

$$\Rightarrow AP = QC$$

∴ APCQ is a ||gm

$$\Rightarrow AQ \parallel PC$$

In  $\triangle$  *BAY*,  $XP \parallel AY$  and *P* is the mid-point of *AB* 

$$\therefore BX = YX$$

Similarly, in  $\triangle DXC$ , DY = YX

$$\therefore BX = XY = DY$$

**95.** (a) In a rhombus ABCD, if AC and BD are two diagonals then

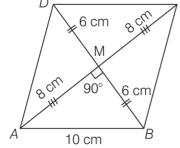
$$AB^2 + BC^2 + CD^2 + AD^2$$

$$= AC^{2} + BD^{2}$$

$$\Rightarrow (10)^{2} + (10)^{2} + (10)^{2} + (10)^{2}$$

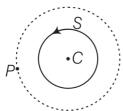
$$= (16)^{2} + (12)^{2}$$





Hence, both I and II are true but III is false.

**96.** (b) If S is a circle with centre C and P be a movable point outside S, then the locus of P such that the tangent from P to S are of constant length is the circle through P with centre at C.



97. (b) Circumference of circle

$$=2\pi r = 2 \times \frac{22}{7} \times 42 = 264 \text{ cm}$$

 $\therefore$  Length of wire = 264 cm

Wire is bent into a square.

- :. Perimeter of square = 264 cm
- $\Rightarrow$  4 × Sides of square = 264
- ∴ Side of square =  $\frac{264}{4}$  = 66 cm
- 98. (b) Let the radius of big drop and small drop be R and r respectively.

By given condition,

 $27 \times \text{Volume of smaller drops} = \text{Volume}$ of bigger drop

$$\therefore 27 \times \frac{4}{3} \pi r^3 = \frac{4}{3} \pi R^3$$

$$\Rightarrow 27 \times (0.2)^3 = R^3 \left[ \because r = 0.2 \text{ cm} \right]$$

$$\Rightarrow$$
 (3×0.2) <sup>3</sup>= $R^3 \Rightarrow$  0.6 cm

- 99. (c) Lower class limits are obtained by subtracting 0.5 from the lower limit, so clearly 9.5, 19.5, 29.5 and 39.5 are the actual lower class limits.
- **100.**(*a*) Required class boundary = Lower class boundary of lowest class + Width of class

$$= 5.1 + 2.5 \times 10 = 30.1$$