1) a2) b3) d4) d5) b6) c7) a8) a9) a10) d11) c12) c13) c14) a15) d16) b17) c18) c19) a20) d21) c22) b23) b24) b25) a26) a27) c28) d29) a30) c31) a32) d33) a34) d35) a36) a37) a38) d39) b40) c41) b42) d43) c44) c45) a46) d47) b48) c49) d50) c51) b52) c53) b54) c55) b56) b57) c58) a59) b60) d61) c62) a63) a64) d65) c66) b67) d68) a69) c70) a71) c72) d73) d74) c75) b76) a77) c78) b79) b80) c81) b82) b83) c84) c85) c86) a87) c88) d89) a90) c91) b92) c93) b94) d95) c					
11) c12) c13) c14) a15) d16) b17) c18) c19) a20) d21) c22) b23) b24) b25) a26) a27) c28) d29) a30) c31) a32) d33) a34) d35) a36) a37) a38) d39) b40) c41) b42) d43) c44) c45) a46) d47) b48) c49) d50) c51) b52) c53) b54) c55) b56) b57) c58) a59) b60) d61) c62) a63) a64) d65) c66) b67) d68) a69) c70 a71) c72) d73) d74) c75) b76) a77) c78) b79) b80) c81) b82) b83) c84) c85) c86) a87) c88) d89) a90) c	1) a	2) b	3) d	4) d	5) b
16) b17) c18) c19) a20) d21) c22) b23) b24) b25) a26) a27) c28) d29) a30) c31) a32) d33) a34) d35) a36) a37) a38) d39) b40) c41) b42) d43) c44) c45) a46) d47) b48) c49) d50) c51) b52) c53) b54) c55) b56) b57) c58) a59) b60) d61) c62) a63) a64) d65) c66) b67) d68) a69) c70) a71) c72) d73) d74) c75) b76) a77) c78) b79) b80) c81) b82) b83) c84) c85) c86) a87) c88) d89) a90) c	6) c	7) a	8) a	9) a	10) d
21) c22) b23) b24) b25) a26) a27) c28) d29) a30) c31) a32) d33) a34) d35) a36) a37) a38) d39) b40) c41) b42) d43) c44) c45) a46) d47) b48) c49) d50) c51) b52) c53) b54) c55) b56) b57) c58) a59) b60) d61) c62) a63) a64) d65) c66) b67) d68) a69) c70) a71) c72) d73) d74) c75) b76) a77) c78) b79) b80) c81) b82) b83) c84) c85) c86) a87) c88) d89) a90) c	11) c	12) c	13) c	14) a	15) d
26) a 27) c 28) d 29) a 30) c 31) a 32) d 33) a 34) d 35) a 36) a 37) a 38) d 39) b 40) c 41) b 42) d 43) c 44) c 45) a 46) d 47) b 48) c 49) d 50) c 51) b 52) c 53) b 54) c 55) b 56) b 57) c 58) a 59) b 60) d 61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	16) b	17) c	18) c	19) a	20) d
31) a 32) d 33) a 34) d 35) a 36) a 37) a 38) d 39) b 40) c 41) b 42) d 43) c 44) c 45) a 46) d 47) b 48) c 49) d 50) c 51) b 52) c 53) b 54) c 55) b 56) b 57) c 58) a 59) b 60) d 61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	21) c	22) b	23) b	24) b	25) a
36) a 37) a 38) d 39) b 40) c 41) b 42) d 43) c 44) c 45) a 46) d 47) b 48) c 49) d 50) c 51) b 52) c 53) b 54) c 55) b 56) b 57) c 58) a 59) b 60) d 61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	26) a	27) c	28) d	29) a	30) c
41) b 42) d 43) c 44) c 45) a 46) d 47) b 48) c 49) d 50) c 51) b 52) c 53) b 54) c 55) b 56) b 57) c 58) a 59) b 60) d 61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	31) a	32) d	33) a	34) d	35) a
46) d47) b48) c49) d50) c51) b52) c53) b54) c55) b56) b57) c58) a59) b60) d61) c62) a63) a64) d65) c66) b67) d68) a69) c70) a71) c72) d73) d74) c75) b76) a77) c78) b79) b80) c81) b82) b83) c84) c85) c86) a87) c88) d89) a90) c	36) a	37) a	38) d	39) b	40) c
51) b 52) c 53) b 54) c 55) b 56) b 57) c 58) a 59) b 60) d 61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	41) b	42) d	43) c	44) c	45) a
56) b 57) c 58) a 59) b 60) d 61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	46) d	47) b	48) c	49) d	50) c
61) c 62) a 63) a 64) d 65) c 66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	51) b	52) c	53) b	54) c	55) b
66) b 67) d 68) a 69) c 70) a 71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	56) b	57) c	58) a	59) b	60) d
71) c 72) d 73) d 74) c 75) b 76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	61) c	62) a	63) a	64) d	65) c
76) a 77) c 78) b 79) b 80) c 81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	66) b	67) d	68) a	69) c	70) a
81) b 82) b 83) c 84) c 85) c 86) a 87) c 88) d 89) a 90) c	71) c	72) d	73) d	74) c	75) b
86) a 87) c 88) d 89) a 90) c	76) a	77) c	78) b	79) b	80) c
	81) b	82) b	83) c	84) c	85) c
91) b 92) c 93) b 94) d 95) c	86) a	87) c	88) d	89) a	90) c
	91) b	92) c	93) b	94) d	95) c
96) d 97) a 98) b 99) c 100) a	96) d	97) a	98) b	99) c	100) a

ANSWER KEY

HINTS & SOLUTION

- 1. (a) By BODMAS rule, $10 \div 4 + 6 \times 4$ = $10 \div (4 + 6) \times 4$ = $10 \div 10 \times 4$ = $1 \times 4 = 4$
- (b) If k is any even positive integer, then (k²+2k) is divisible by 8 but may not be divisible by 24.
 Let k = 2m, m ∈ N, then

 $k^{2} + k \cdot 2 = 4m^{2} + 4m = 4m(m + 1)$ which is divisible by 8.

- 3. (d) Since, $a < b \Rightarrow a b < 0$. Also, c < 0 $\therefore (a - b) c > 0 \Rightarrow ac - bc > 0 \Rightarrow ac > bc$
- 4. (d) All are true.
- 5. (b) We know that, between any two rational numbers, there are an infinite number of rational and irrational numbers. Hence, only statement II is correct.

6. (c) Let
$$S_n = an(n-1)$$
, then
 $S_{n-1} = a(n-1)(n-2)$
 $\therefore T_n = S_n - S_{n-1} = 2a(n-1)$
 $T_n^2 = 4a^2(n-1)^2$
 $\therefore Sum = \sum T_n^2 = 4a^2 \frac{(n-1)(n)(2n-1)}{6}$
 $= \frac{2a^2n(n-1)(2n-1)}{3}$

7. (a) \therefore a, x, y, x, b are in AP. $\therefore x + y + z = 3\left(\frac{a+b}{2}\right)$

$$\Rightarrow 15 = \left(\frac{a+b}{2}\right)$$

$$\Rightarrow a+b=10 \qquad \dots(i)$$

Also, *a*, *x*, *y*, *z*, *b* are in HP.

$$\Rightarrow \frac{1}{a}, \frac{1}{x}, \frac{1}{y}, \frac{1}{z}, \frac{1}{b} \text{ are in AP.}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 3\left(\frac{a+b}{2ab}\right)$$

$$\Rightarrow \frac{5}{3} = \frac{3 \times 10}{2ab} \qquad [\because a+b=10]$$

$$\Rightarrow ab=9 \qquad \dots(ii)$$

On solving Eqs. (i) and (ii), we get

$$a = 1, b = 9 \text{ or } b = 1, a = 9$$

- 8. (a) I. $S_n = \frac{n(n+1)}{2} = 861$ $\Rightarrow n^2 + n - 861 \times 2 = 0$ $\Rightarrow (n+42) (n-41) = 0$ $\Rightarrow n = -42, 41$ Hence, statement I is correct. II. Given, $S_n = S_{-(n+1)}$ If, $S_n = m$, then we have two values of n if and only if m is positive integer. Hence, statement II is incorrect.
- (a) For integers a, b and c,
 if HCF (a, b) = 1 and HCF (a, c) = 1 then,
 HCF (a, b c) = 1
- 10. (d) It is always 1 Illustrations Let a = 21 and b = 35Then, HCF (21, 35) = 7 \therefore HCF $\left(\frac{21}{7}, \frac{35}{7}\right) =$ HCF(3,5) = 1

- 11. (c) Here, say $a = 2^3 \times 3 \times 5$ and $b = 2^4 \times 5 \times 7$, then LCM $= 2^4 \times 3 \times 5 \times 7$
- **12.** (c) Given, $0.232323...=0.\overline{23}$ (which is a recurring decimal) = $\frac{23}{99}$
- **13.** (c) $7.2 \frac{7.2}{100}$ ⇒ 7.2 - 0.72 = 6.48
- 14. (a) Let fraction be x, then $x^2 = 227.798649$ ⇒ $x = \sqrt{227.798649} = 15.093$

15. (d)

$$\sqrt{9-2\sqrt{14}} = \sqrt{7+2-2\times\sqrt{7}\times\sqrt{2}}$$

 $= \sqrt{(\sqrt{7}-\sqrt{2})^2} = \sqrt{7}-\sqrt{2}$

16. (b)Given,

$$\sqrt{343} + \sqrt{307} + \sqrt{273} + \sqrt{241} + \sqrt{225}$$
$$= \sqrt{343} + \sqrt{307} + \sqrt{273} + \sqrt{241 + 15}$$
$$= \sqrt{343} + \sqrt{307} + \sqrt{273 + 16}$$
$$= \sqrt{343} + \sqrt{307 + 17}$$
$$= \sqrt{343 + 18} = \sqrt{361} = 19$$

17. (c) Given, total number of tress = 17956

... Number of trees in each row

$$=\sqrt{17956} = 134$$

18. (c) Here,
$$\frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}}$$

DEFENCE DIRECT EDUCATION

$$= \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}} \times \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} + \sqrt{5}} = \frac{(\sqrt{7} + \sqrt{5})^2}{7 - 5}$$
$$= \frac{7 + 5 + 2\sqrt{35}}{2} = \frac{12 + 2\sqrt{35}}{2}$$
$$[\because (a+b)^2 = a^2 + b^2 + 2ab]$$
$$= 6 + \sqrt{35} = 6 + 5.9160 = 11.9160$$

- 19. (a) Distance between car and scooter = 30 km Relative speed y = 60 - 50 = 10 km/h So, the time taken by scooter to overtake the car = $\frac{30}{10} = 3$ h
- **20.** (d) Distance travelled in 1h = 48 km

$$\therefore \text{ Distance travelled in 50 min} = \frac{48}{60} \times 50 = 40 \text{ km}$$

Time to be reduced = $\frac{40}{60}$ h

- $\therefore \text{ Required speed} = \frac{40}{40/60} = \frac{40 \times 60}{40} = 60 \text{ km/h}$
- 21. (c) Let the length of each train be I m. $\Rightarrow \text{Speed of first train} = \left(\frac{I}{4}\right) \text{m/s}$ and speed of second train $= \left(\frac{I}{5}\right) \text{m/s}$

As, both trains are moving in opposite direction.

Time taken to cross each other

$$= \frac{I+I}{\frac{I}{4} + \frac{I}{5}}$$
$$= \left(\frac{2I}{\frac{9I}{20}}\right) s = \left(\frac{20 \times 2}{9}\right) = \frac{40}{9} s$$

22. (b) Speed of train = 48 km/h = $\left(48 \times \frac{5}{18}\right)$ m/s Let the length of train be x m

$$x = 48 \times \frac{5}{18} \times 9$$

x = 120 mLength of the train is 120 m.

23. (b) One day's work of $A = \frac{1}{8}$ One day's work of $B = \frac{1}{12}$ 3 day's work of $A = \frac{3}{8}$ Remaining work of $A = 1 - \frac{3}{8}$ $= \frac{5}{8}$ One day's work of A and B together $= \frac{1}{8} + \frac{1}{12} = \frac{3+2}{24} = \frac{5}{24}$ Number of days to finish the work $= \frac{5}{8} \div \frac{5}{24} = 3$ days

24. (b) Here, x = 25 days and y = 25
∴ Required days =
$$\frac{100x}{100 + y}$$

= $\frac{100 \times 25}{100 + 25}$
= $\frac{2500}{125}$ = 20 days

25. (a) Here, x = 15 days, y = 20 days and z = 25 days and $K = \gtrless 4700$ Share of $C = \gtrless \left(\frac{kxy}{xy + yz + zx}\right)$ DEFENCE DIRECT EDUCATION

$$= ₹ \frac{4700 \times 15 \times 20}{15 \times 20 + 20 \times 25 + 25 \times 15}$$
$$= ₹ \frac{4700 \times 15 \times 20}{1175} = ₹ 1200$$

26. (a) B's one min's work = (A + B + C)'s one min's work -(A + C)'s one min's work $= \frac{1}{30} - \frac{1}{45} = \frac{6-4}{180} = \frac{2}{180} = \frac{1}{90}$ C's one min's work = (A + B + C)'s one min work - (A + B)'s one min work $= \frac{1}{30} - \frac{1}{40} = \frac{4-3}{120} = \frac{1}{120}$ A' one min's work = (A + B)'s one min work -B's one min work $= \frac{1}{40} - \frac{1}{90} = \frac{9-4}{360}$ $= \frac{5}{360} = \frac{1}{72}$

Hence, *A*, *B* and *C* alone can finish the work in 72 min, 90 min and 120 min, respectively.

27. (c) Given, 90% of
$$A = 30\%$$
 of B

$$\frac{90A}{100} = \frac{30B}{100}$$

$$\Rightarrow \frac{A}{B} = \frac{3}{9} \Rightarrow B = 3A$$
Now, $B = x\%$ of A , $3A = \frac{xA}{100}$
 $\therefore x = 300$
Hence, the value of x is 300.

28. (d) Let total number of staff be 100. Female staff = 40 Male staff = (100 - 40) = 60Votes casted by females $\frac{40}{100} \times 40 = 16$ Votes casted by males = $\frac{60}{100} \times 60 = 36$ Votes casted by both males and females = 16 + 36 = 52

- \therefore Percentage votes obtained = 52%.
- 29. (a) Let the salary of Kunal be ₹ 100, then saving = ₹ 30 Expenses = ₹ 70 New expenses = (100 + 30)% of ₹ 70 = ₹ 91 New saving = ₹ (100 - 91) = ₹ 9 He saves ₹ 9, his salary = ₹ 100 If he saves ₹ 1215. Then, his salary = ₹ $\left(\frac{100}{9} \times 1215\right)$ = ₹ 13500
- 30. (c) Amount of sugar in 6 L of solution = $\frac{4}{100} \times 6 = 0.24$ L

After evaporation, sugar in 5 L = 0.24 L

.: Percentage of sugar

$$= \left(\frac{0.24}{5} \times 100\right) = 4\frac{4}{5}\%$$

- **31.** (*a*) Let the sum be $\gtrless x$ and the original rate $r^{0/6}$, then
 - Simple interest = $\frac{x \times r \times 2}{100}$ Now, rate is increased by 3%. \therefore New rate = (r+3)% \therefore Simple interest = $\frac{x \times (r+3) \times 2}{100}$ $\therefore \frac{x \times (r+3) \times 2}{100} - \frac{x \times r \times 2}{100} = 72$ $\Rightarrow \frac{(xr+3x)2}{100} - \frac{2xr}{100} = 72$ $\Rightarrow \frac{2xr+6x-2xr}{100} = 72$

∴ *x* = ₹1200

32. (d) SI at
$$5\% = 6P - P = 5P$$

 $\therefore 5P = \frac{P \times 5 \times T}{100} \Rightarrow T = 100 \text{ yr}$
Now, for new rate (R),
 $11P = \frac{P \times R \times 100}{100}$
 $\therefore R = 11\%$

33. (*a*) Let the principal be $\gtrless x$ and the time be *t* yr.

Rate = 10%

$$\therefore \text{ Simple interest} = \frac{P \times R \times T}{100}$$
According to the question,

$$0.125 \times \text{ Principal} = \text{ Simple interest}$$

$$\therefore 0.125P = \frac{P \times 10 \times T}{100}$$

$$\Rightarrow \frac{125P}{100} = \frac{10 \times P \times T}{100}$$

$$\Rightarrow \frac{125}{100} = T$$

$$\Rightarrow T = \frac{5}{4} = 1\frac{1}{4} \text{ yr}$$

34. (*d*) Let the amount remaining to pay be \mathbf{x} .

Price of house = ₹ (x + 8000) $\Rightarrow 9600 - \frac{x \times 4 \times 5}{100} = x$ $\Rightarrow 9600 - \frac{x}{5} = x$ $\Rightarrow 9600 = \frac{6x}{5} \Rightarrow \frac{9600 \times 5}{6} = x$ $\Rightarrow x = ₹ 8000$

∴ Cash price of the house = ₹ (8000 + 8000) = ₹ 16000

- 35. (a) Let a man invest ₹ 1000 at a R%. Now, rate is increased by 2%. New rate = (R + 2)%By given condition, $\frac{1000 \times R \times 3}{100} + \frac{1500 \times (R + 2) \times 3}{100} = 390$ $\Rightarrow 30R + 45R + 90 = 390$ $\Rightarrow 75R = 300 \Rightarrow R = 4\%$
- **36.** (*a*) Let the value of machine 3 yr ago be $\overline{\xi} x$. and given, $P = \overline{\xi} 10935$, R = 10% and

$$n = 3 \text{ yr}$$

∴ $x = P\left(1 - \frac{R}{100}\right)^n$
∴ $x\left(1 - \frac{10}{100}\right)^3 = 10935$
⇒ $x\left(\frac{90}{100}\right)^3 = 10935$
∴ $x = \frac{10935 \times 10 \times 10 \times 10}{9 \times 9 \times 9} = ₹ 15000$

37. (a) Let the sum be $\exists x$, then

$$x\left(1 + \frac{R}{100}\right)^{5} = 2x$$

$$\Rightarrow \quad \left(1 + \frac{R}{100}\right)^{5} = 2$$

The amount after 20 yr

$$x \left(1 + \frac{R}{100}\right)^{20} = x \left[\left(1 + \frac{R}{100}\right)^5 \right]^4$$

= 2⁴x = 16x [from Eq. (i)]
= 16 × 10000 = ₹ 160000
[put x = ₹ 10000]

38. (d) Given, P = ₹ 5000, $R_1 = 8\%$, $R_2 = 10\%$, $R_3 = 12\%$

and
$$n_1 = n_2 = n_3 = 1$$
 yr
 \therefore Amount
 $= P\left(1 + \frac{R_1}{100}\right)^{n_1} \left(1 + \frac{R_2}{100}\right)^{n_2} \left(1 + \frac{R_3}{100}\right)^{n_3}$
 $= \left[5000 \times \left(1 + \frac{8}{100}\right) \left(1 + \frac{10}{100}\right) \left(1 + \frac{12}{100}\right)\right]$
 $= \left(5000 \times \frac{27}{25} \times \frac{11}{10} \times \frac{28}{25}\right)$
 $= ₹ 6652.80$
 \therefore Compound interest = $6652.80 - 5000$
 $= ₹ 1652.80$

39. (b) Total gain = SP – CP = (840 – 720) = ₹ 120 ∴ Gain percent = $\frac{120}{720} \times 100 = 16\frac{2}{3}\%$

40. (c) Here, true weight = 1000 and
gain = 25%

$$\Rightarrow 25 = \frac{1000 - \text{false weight}}{\text{false weight}} \times 100$$

 $\Rightarrow \frac{\text{false weight}}{4} = 1000 - \text{false weight}$
4

⇒ false weight =
$$1000 \times \frac{4}{5} = 800$$

- 41. (b) We know that, Net percentage discount $= \frac{\text{Discount}}{\text{Cost price}} \times 100\%$ $= \frac{1}{4} \times 100\% = 25\%$
- 42. (d) The cost price of table for person B = $2000 + 6 \times \frac{2000}{100}$ = 2000 + 120 = ₹ 2120Selling price for person B

Sening price to

$$= 2120 - \frac{2120 \times 5}{100}$$

= 2120 - 106 = ₹ 2014

- **43.** (c) Given, SP = ₹ 110 and loss = 12% ∴ CP = ₹ $\left(\frac{100}{88} \times 110\right)$ = ₹ 125 Now, CP = ₹ 125, gain required = 8% ∴ SP = ₹ $\left(\frac{(100+8)}{100} \times 125\right)$ = ₹ 135
- 44. (c) Let the ratio be x and (x + 40). Then, by given condition, $\frac{x}{x+40} = \frac{2}{7}$ $\Rightarrow 7x = 2x + 80 \Rightarrow x = 16$ So, the required ratio is 16 : 56.
- **45.** (a) Number of people having characteristic X = 10 + 30 = 40Number of people having characteristic Y = 10 + 20 = 30Required ratio = 40:30 = 4:3.

46. (d) Given,
$$\frac{x^3 + 3x}{3x^2 + 1} = \frac{341}{91}$$

By componendo and dividendo rule,
 $\frac{x^3 + 3x + 3x^3 + 1}{x^3 + 3x - 3x^2 - 1} = \frac{341 + 91}{341 - 91}$
 $= \frac{432}{250}$
 $\Rightarrow \frac{(x+1)^3}{(x-1)^3} = \frac{216}{125}$
[$\because (a+b)^3 = a^3 + b^3 + 3ab(a+b)$]
On cube roots both sides, we get
 $\Rightarrow \frac{x+1}{x-1} = \frac{6}{5} \Rightarrow 5(x+1) = 6(x-1)$

 $\therefore x = 11$

47. (b) Given,
$$x \propto \frac{y}{z^2} \Rightarrow x = \frac{ky}{z^2}$$

 $\therefore x = 10, y = 4 \text{ and } z = 14$
 $\therefore 10 = \frac{k.4}{196} \Rightarrow k = \frac{1960}{4} = 490$
Now, $z = 7$ and $y = 16$, then
 $x = \frac{490 \times 16}{7 \times 7} = 160$
48. (c) Given, $p + r = 2q \Rightarrow 2 = \frac{p + r}{q}$
and $\frac{1}{q} + \frac{1}{s} = \frac{2}{r}$
 $\Rightarrow \frac{1}{q} + \frac{1}{s} = \frac{p + r}{qr}$
 $\Rightarrow \frac{s + q}{sq} = \frac{p + r}{qr}$
 $\Rightarrow r(s + q) = s(p + r)$

$$\Rightarrow rq = sp \Rightarrow \frac{p}{q} = \frac{r}{s}$$

$$\therefore \quad p: q = r: s$$

49. (d) Let the number of passengers travelling by class I and class II be x and 50x respectively.Then, amount collected from class I and II

will be $\gtrless 3 \times x$ and $\gtrless 50x$ respectively.

Given, 3x + 50x = 1325

 $53x = 1325 \Rightarrow x = 25$

: Amount collected from class II

50. (c) I. 4 leaps of cat = 3 leaps of dog
⇒ 1 leap of cat = 3/4 leap of dog
Cat takes 5 leaps for every 4 leaps of dog.
∴ Required Ratio
= (5×cat's leap) : (4×dog's leap)

$$= \left(5 \times \frac{3}{4} \operatorname{dog's} \operatorname{leap}\right): (4 \times \operatorname{dog's} \operatorname{leap})$$
$$= 15: 16$$
Thus, $\frac{\operatorname{Speed of cat}}{\operatorname{Speed of dog}} = \frac{15}{16}$ II. $\frac{\operatorname{Distance}(\operatorname{cat})}{\operatorname{Distance}(\operatorname{dog})} = \frac{\operatorname{s(cat)} \times t}{\operatorname{s(dog)} \times t}$
$$= \frac{\operatorname{s(cat)} \times 30}{\operatorname{s(dog)} \times 30} = \left(\frac{\operatorname{s(cat)}}{\operatorname{s(dog)}} = \frac{15}{16}\right)$$

Thus, both statements I and II are correct.

51. (b)
$$\log_{100} 0.1 = \log_{10^2} \left(\frac{1}{10}\right)$$

= $\frac{1}{2} \log_{10} \left(\frac{1}{10}\right) = \frac{1}{2} \log_{10} (10)^{-1}$
= $-\frac{1}{2} \log_{10} 10 = -\frac{1}{2}$

52. (c)
$$\log_y x \log_z y \log_x z$$

$$= \frac{\log x}{\log y} \times \frac{\log y}{\log z} \times \frac{\log z}{\log x} = 1$$

$$\left[\because \log_a b = \frac{\log b}{\log a} \right]$$

53. (b) Given,
$$10^{x} = 1.73$$
, $x = \log_{10} 1.73$
 $= \log_{10} 1730 - \log_{10} 1000$
 $= \log_{10} 1730 - \log_{10} 10^{3}$
 $= 3.2380 - 3 = 0.2380$
54. (c) $\log_{5} 10 = \frac{\log_{10} 10}{\log_{10} 5} = \frac{1}{0.70}$
 $= 1.43143$
[$\because \log_{10} 10 = 1$]
55. (b) $(a^{2} - b^{2} - 4ac + 4c^{2})$

DEFENCE DIRECT EDUCATION

$$= (a^{2} - 4ac + 4c^{2}) - b^{2}$$

$$[(a^{2}) - 2(2c)(a) + (2c)^{2}] - b^{2}$$

$$= (a - 2c)^{2} - b^{2}$$

$$= (a - 2c - b)(a - 2c + b)$$

56. (a) Since,
$$x^{1/3} + y^{1/3} + z^{1/3} = 0$$

 $\therefore (x^{1/3})^3 + (y^{1/3})^3 + (z^{1/3})^3$
 $- 3x^{1/3}y^{1/3}z^{1/3} = 0$
 $\Rightarrow x + y + z - 3(xyz)^{-1/3} = 0$
 $\Rightarrow x + y = z = 3(xyz)^{-1/3}$
 $\Rightarrow (x + y + z)^3 = 27xyz$

57. (c) Let
$$f(x) = 9x^2 + 3px + 6q$$

Given, $f(-1/3) = -3/4$
 $\Rightarrow 9\left(-\frac{1}{3}\right)^2 + 3p\left(-\frac{1}{3}\right) + 6q = -3/4$
 $\Rightarrow 1 - p + 6q = -3/4$
 $\Rightarrow 24q - 4p + 7 = 0$...(i)
Let $g(x) = qx^2 + 4px + 7$
Since, $(x + 1)$ is a factor of $g(x)$
 $\therefore g(-1) = 0 \Rightarrow q - 4p + 7 = 0$...(ii)
On solving Eq. (i) and Eq. (ii), we get
 $q = 0$ and $p = 7/4$

58. (a)
$$\left(a^2 + a + \frac{1}{4}\right) = a^2 + \frac{1}{2}a + \frac{1}{2}a + \frac{1}{4}$$

= $a\left(a + \frac{1}{2}\right) + \frac{1}{2}\left(a + \frac{1}{2}\right)$
= $\left(a + \frac{1}{2}\right) + \left(a + \frac{1}{2}\right) = \left(a + \frac{1}{2}\right)^2$

59. (b) ::
$$(a+b+c)^2 = a^2 + b^2 + c^2$$

+ $2ab + 2bc + 2ac$
(10) $^2 = (a^2 + b^2 + c^2) + 2(31)$
 $a^2 + b^2 + c^2 = 100 - 62$

 $\Rightarrow a^2 + b^2 + c^2 = 38$

60. (d) Let
$$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

Since, (x − 1) is a factor of $f(x)$.
Put x = 1 in $f(x)$, then
 $f(1) = a_0 + a_1 + a_2 + ... + a_n$
 $\Rightarrow 1 = a_0 + a_1 + a_2 + ... + a_n$
 $\therefore 1 - a_0 - a_2 - ... = a_1 + a_3 + ...$

61. *(a)* LCM = product of the largest power of each factor

$$= x^{2} (x - 1)(x - 2)(x + 3)$$

- 62. (a) I. $x^2 6x + 9 = (x 3) (x 3)$ and $x^3 - 27 = x^3 - (3)^3$ $= (x - 3) (x^2 + 3x + 9)$ ∴ HCF = x - 3Hence, it is true.
 - II. LCM of $10x^2yz$, 15xyz, $20xy^2z^2$ is $60x^2y^2z^2$. Hence, it is false.

III.
$$6x^2 - 7x - 3 = (2x - 3)(3x + 1)$$

and $2x^2 + 11x - 21$

= (x + 7) (2x - 3)Hence, HCF = (2x - 3), it is also true. Hence, the statement I and III are correct.

63. (a)
$$A = (x + 3)^{2}(x - 2)(x + 1)^{2}$$
 and
 $B = (x + 1)^{2}(x + 3)(x + 4)$
∴ HCF of polynomials
 $= (x + 1)^{2}(x + 3)$

64. (d) (x + 1) is the HCF of

$$Ax^2 + Bx + C$$
 and $Bx^2 + Ax + C$
∴ $A(-1)^2 + B(-1) + C = 0$
⇒ $A - B + C = 0$

ъ

$$\Rightarrow C = B - A$$

and $B(-1)^{2} + A(-1) + C = 0$
$$\Rightarrow B - A + C = 0$$

$$\Rightarrow C = A - B$$

$$\therefore C = 0$$

65. (c) Given, $a = \frac{1 + x}{2 - x}$.
So, $\frac{1}{a + 1} + \frac{2a + 1}{a^{2} - 1} = \frac{3a}{a^{2} - 1}$
$$= \frac{3\left(\frac{1 + x}{2 - x}\right)}{\left(\frac{1 + x}{2 - x}\right)^{2} - 1}$$

$$= \frac{3(1 + x)(2 - x)}{1 + x^{2} + 2x - (4 + x^{2} - 4x)}$$

$$= \frac{3(1 + x)(2 - x)}{6x - 3}$$

$$= \frac{(1 + x)(2 - x)}{(2x - 1)}$$

66. (b) Here, reciprocal of $\frac{x-3}{x^2+1}$ is $\frac{x^2+1}{(x-3)}$ So,

$$\frac{x-3}{x^2+1} + \frac{x^2+1}{x-3} = \frac{(x-3)^2 + (x^2+1)^2}{(x^2+1)(x-3)}$$
$$= \frac{x^2+9-6x+x^4+1+2x^2}{x^3-3x^2+x-3}$$
$$= \frac{x^4+3x^2-6x+10}{x^3-3x^2+x-3}$$

67. (d) Put x = 2 and y = 1 in each equation I. $2x + 5y = 9 \Rightarrow 2(2) + 5(1) = 9$ 9 = 9, it is true. II. 5x + 3y = 14 $\Rightarrow 5(2) + 3(1) = 14$ $\Rightarrow 13 = 14, \text{ it is false.}$ III. $2x + 3y = 7 \Rightarrow 2(2) + 3(1) = 7$ 7 = 7, it is true. IV. $2x - 3y = 1 \Rightarrow 2(2) - 3(1) = 1$ 1 = 1, it is true. So, x = 2 and y = 1is a solution of I, III and IV.

68. (a) We have,
$$25x - 19 - [3 - \{4x - 5\}]$$

 $= 3x - (6x - 5)$
 $\Rightarrow 25x - 19 - [3 - 4x + 5]$
 $= 3x - 6x + 5$
 $\Rightarrow 25x - 19 + 4x - 8 = -3x + 5$
 $\Rightarrow 29x + 3x = 5 + 27$
 $\Rightarrow 32x = 32 \Rightarrow x = \frac{32}{32} = 1$
 $\Rightarrow x = 1$

69. (c) The graph of ax + by = c, dx + ey = f will be coincident, if the system has infinite number of solutions. So, statement II is false. Thus, statements I and III are correct.

70. (a) Given,
$$x^2 - 8x + p = 0$$

Sum of roots $\alpha + \beta = 8$ and product of
roots $\alpha\beta = p$
 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$...(i)
 $\Rightarrow 40 = (8)^2 - 2(p) [\because \alpha^2 + \beta^2 = 40]$
 $\Rightarrow 40 - 64 = -2p$
 $\Rightarrow -24 = -2p$
 $\Rightarrow p = 12$

71. (c) As, $\sqrt{x+4} = x-2$ On squaring both sides, we get $(x+4) = (x-2)^2$ $\Rightarrow x+4 = x^2+4-4x$

$$\Rightarrow x^2 - 5x = 0 \Rightarrow x = 0, x = 5$$

But for $x = 0, \sqrt{0+4} = 0-2$
 $\sqrt{4} \neq -2$
So, $x = 5$ is the only solution.

- 72. (d) Here, roots are α and $\alpha + 1$. $\therefore \alpha + (\alpha + 1) = l$ [sum of roots] $\Rightarrow 2\alpha = l - 1 \Rightarrow \alpha = \frac{l - 1}{2}$ Also, $\alpha(\alpha + 1) = m$ or $\alpha^2 + \alpha = m$ $\Rightarrow \left(\frac{l - 1}{2}\right)^2 + \left(\frac{l - 1}{2}\right) = m$ $\Rightarrow (l - 1)^2 + 2(l - 1) = 4m$ $\Rightarrow l^2 - 1 = 4m \Rightarrow l^2 = 4m + 1$
- 73. (d) Given equation, $x^2 3x + 2 = 0$ $\Rightarrow x^2 - 2x - x + 2 = 0$ $\Rightarrow (x - 2) (x - 1) = 0 \Rightarrow x = 2, 1$ Let $\alpha = 1$ and $\beta = 2$ $\therefore \alpha + 1 = 2$ and $(\beta + 1) = 3$ Now, sum of roots = 2 + 3 = 5and product of roots $= 2 \times 3 = 6$ Required equation $= x^2 - (\text{sum of roots}) + \text{product of roots} = 0$ $\Rightarrow x^2 - 5x + 6 = 0$ Hence, the equation is neither I nor II.

74. (c) Here,
$$2x + 3 \ge 8 \Rightarrow 2x \ge 8 - 3$$

 $\Rightarrow 2x \ge 5 \Rightarrow x \ge \frac{5}{2}$
Again, $3x + 1 \le 12$
 $\Rightarrow 3x \le 11 \Rightarrow x \le \frac{11}{3}$
By combining values, we get
 $\frac{5}{2} \le x \le \frac{11}{3}$

75. (b) Let the smaller part = x and greater part = 16 - xBy given condition, $2(16-x)^2 - x^2 = 164$ $\Rightarrow 2(256 + x^2 - 32x) - x^2 = 164$ $x^2 - 64x + 348 = 0$ ⇒ ⇒ (x-58)(x-6)=0⇒ x = 58, x = 6Here, $x \neq 58$... x = 6and, hence larger part = 16 - x = 16 - 6 = 10**76.** (a) Given, $A = \{B, O, W, L\}$

- $B = \{B, O, W, L, E\}$ $C = \{B, O, W, L, E\}$ $\therefore A \subset B \text{ and } B = C$
- 77. (c) I. $A = \{0\}$ II. $B = \{2\}$ III. $C = \{\}; \pm 4 \text{ is not an odd integer}$ Here, only III is empty set.

78. (b)
$$(B \cup C) = \{1, 2, 3, 4, 5, 6, 7\}$$

 $\therefore A \cap (B \cup C) = \{1, 2, 3, 4\}$
 $\cap \{1, 2, 3, 4, 5, 6, 7\}$
 $= \{1, 2, 3, 4\}$

79. (b) Let
$$A = \{2, 4, 16, 256,...\}$$

for $n = 0, 2^{2^0} = 2^1 = 2$
for $n = 1, 2^{2^1} = 2^2 = 4$
for $n = 2, 2^{2^2} = 2^4 = 16$
Thus,
 $A = \{x \in N \mid x = 2^{2^n}, n = 0, 1, 2,...\}$

80. (c) A = diagonal equal and bisecting each other.

A is square or rectangle. and B diagonal bisecting each other at 90° .

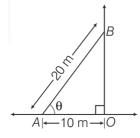
DEFENCE DIRECT EDUCATION

So, $A \cap B$ = the set of squares.

81. (b) We know that,
$$\pi$$
 radian = 180°
 $\Rightarrow 1 \text{ radian} = \frac{180^\circ}{\pi} = \frac{180^\circ}{22} \times 7$
 $= \frac{630^\circ}{11} = 57\frac{3^\circ}{11} = 57^\circ + \frac{3 \times 60}{11} \min$
 $= 57^\circ + 16' + \frac{4}{11} \min$
 $= 57^\circ + 16' + \frac{4}{11} \times 60 \text{ s}$
 $= 57^\circ + 16' + 21.8''$
 $= 57^\circ 16'21.8'' = 57^\circ 16'22''$

82. (b) Given,
$$\tan A = 1 = \tan 45^{\circ}$$

 $\Rightarrow A = 45^{\circ}$ and $\tan B = \sqrt{3} = \tan 60^{\circ}$
 $\therefore B = 60^{\circ}$
Now, $\cos A \cos B - \sin A \sin i$
 $= \cos 45^{\circ} \cos 60^{\circ} - \sin 45^{\circ} \sin 60^{\circ}$
 $= \frac{1}{\sqrt{2}} \times \frac{1}{2} - \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2\sqrt{2}}$


83. (c) Given,

I. RHS =
$$\cos^2 \theta (1 + \tan \theta) (1 - \tan \theta)$$

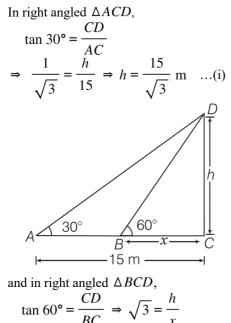
= $\cos^2 \theta (1 - \tan^2 \theta)$
= $\cos^2 \theta \left(\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta}\right)$
= $\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}$ = LHS

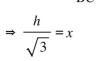
II. Given,

LHS =
$$\frac{1 + \sin \theta}{1 - \sin \theta} = \frac{(1 + \sin \theta)^2}{1 - \sin^2 \theta}$$

= $\left(\frac{1 + \sin \theta}{\cos \theta}\right)$
= $(\sec \theta + \tan \theta)^2$

84. (c) Let θ be the inclination of the ladder to the horizontal.

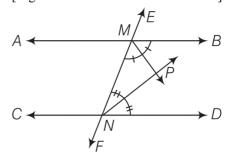



Now, in right angled $\triangle AOB$, $\cos \theta = \frac{AO}{AB} = \frac{10}{20} = \frac{1}{2}$ $\Rightarrow \cos \theta = \cos 60^{\circ}$

$$\therefore \quad \theta = 60^{\circ}$$

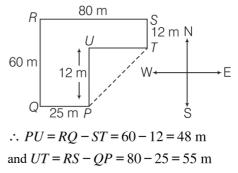
Hence, the angle of inclination of the ladder is 60° .

85. (c) Let the height of the tower be h m and length of the shadow (BC) be x m.



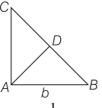
:
$$x = \frac{15}{3} = 5 \text{ m}$$

[from Eq. (i)] Hence, the length of shadow is 5 m. When sun's altitude is 60°.


86. (a) Given,
$$\angle PMN = \frac{1}{2} \angle BMN$$

and $\angle PNM = \frac{1}{2} \angle DNM$
As, $\angle BMN + \angle DNM = 180^{\circ}$
[angles on the same side of transversal]

:. In \triangle MPN, \angle PMN + \angle PNM = 90° $\Rightarrow \angle$ MPN = 180° - (\angle PMN + \angle PNM) [angle sum property]


$$\therefore \ \angle MPN = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

- **87.** *(c)* The least number of straight lines for a bounded plane figure is 3.
- **88.** (*d*) Let *P* be the starting point of his run, then *PT* is the distance between the starting and the finishing point.

:. In
$$\triangle PUT$$
, $PT^2 = (PU)^2 + (TU)^2$
:. $PT = \sqrt{(48)^2 + (55)^2} = \sqrt{2304 + 3025}$
 $= \sqrt{5329} = 73 \text{ m}$

89. (a) In $\triangle ABC$,

Area of $\triangle ABC = \frac{1}{2} \times \text{Base} \times \text{Altitude}$ $\triangle = \frac{1}{2}b \times AC, AC = \frac{2\Delta}{b}$

In $\triangle ABC$, Using Pythagoras theorem,

$$AC^{2} + AB^{2} = BC^{2}$$

$$\Rightarrow BC = \sqrt{\frac{4 \Delta^{2}}{b^{2}} + b^{2}}$$

Again in
$$\triangle ABC$$
, area of $\triangle ABC$

$$\Delta = \frac{1}{2} \times BC \times AD$$
$$\Rightarrow AD = \frac{2\Delta}{\sqrt{\frac{4\Delta^2 + b^4}{b^2}}} = \frac{2\Delta b}{\sqrt{4\Delta^2 + b^2}}$$

90. (c) Each interior angle of a regular polygon (2) = 1002

$$= \frac{(n-2) \times 180^{\circ}}{n}$$

$$\therefore \frac{(n-2) \times 180^{\circ}}{n} = 150^{\circ} \quad \text{(given)}$$

$$(n-2)180 = n \times 150$$

$$\Rightarrow \quad 30n = 360 \Rightarrow n = \frac{360}{30}$$

$$\Rightarrow \quad n = 12$$

91. (b) ABCD is square and ABEF is a rhombus.

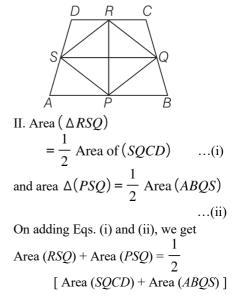
$$\frac{FM}{AF} = \sin 30^{\circ} = \frac{1}{2}$$

$$\therefore FM = \frac{AF}{2}, AF = AB$$

$$D \qquad C$$

$$A = \frac{F}{2}, AF = AB$$

$$D \qquad B$$


$$Area of square = a^{2} \quad (AB = AD = a)$$

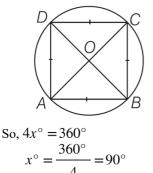
$$Area of rhombus = \frac{a \times a}{2} \left(FM = \frac{a}{2}\right)$$

$$(Area of rhombus = base \times height)$$

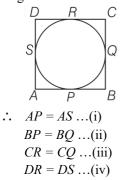
$$\therefore \frac{Area of square}{Area of rhombus} = \frac{2}{1}$$

92. (*c*) PQRS can be shown parallelogram, so the diagonal PR and SQ bisect each other.

 $\Rightarrow \text{Area} (PQRS) = \frac{1}{2} \text{ Area} (ABCD)$


Hence, both statements are true.

- 93. (b) Given, each interior angle = 140° Then, each exterior angle = $(180^{\circ} - 140^{\circ}) = 40^{\circ}$ Number of sides = $\frac{360^{\circ}}{\text{Each exterior angle}} = \frac{360^{\circ}}{40^{\circ}} = 9$ Hence, the number of vertices of polygon
- 94. (d) A square has four equal side


is 9.

: Each side subtends the same angle at the centre O.

Let angle subtended be x° .

95. (*c*) We know that, two tangents drawn from an external point to a circle are equal in length.

On adding Eqs. (i), (ii), (iii) and (iv), we get (AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ) $\Rightarrow AB + CD = AD + BC$

96. (*d*) As, the tangents drawn from an external point to a circle are equal.

$$\therefore AP = AR \dots (i)$$

$$BQ = BP \dots (ii)$$

and $CR = QC \dots (iii)$
On adding Eqs. (i), (ii) and (iii), we get

$$AP + BQ + CR = BP + QC + RA$$

and perimeter of

$$\Delta ABC = AB + BC + CA$$

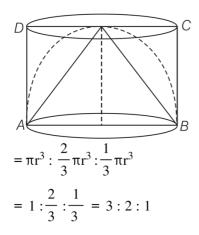
$$= (AP + PB) + (BQ + QC)$$

$$+ (CR + RA)$$

$$= (AP + BQ) + (BQ + CR)$$

$$+ (CR + AP)$$

$$= 2(AP + BQ + CR)$$


$$\therefore AP + BQ + CR = \frac{1}{2}$$

[perimeter of ΔABC]

Hence, the statement I and II are correct.

97. (a) Area of square
$$=$$
 $\frac{1}{2} \times (\text{Diagonal})^2$
 $=$ $\frac{1}{2} \times 50 \times 50$
 $=$ 1250 m²

98. (b) From the information given in the question and the figure it is clear that Radius of the hemisphere = radius of cone = height of cone = height of cylinder. Let it be r.

Then, ratio of volume of cylinder, hemisphere and cone.

99. *(c)* The height of the bar is not proportional to the frequency of the class.

DEFENCE DIRECT EDUCATION

100. (<i>a</i>) Given distribution is 1, 3, 5, 7, 9, <i>x</i> , 15,
17, 19, 21.
Number of terms = 10 (even)
∴ Meridian =
value of $\frac{10}{2}$ th term + Value of $\left(\frac{10}{2} + 1\right)$ th term
2
Value of 5th term + Value of 6th term

$$10 = \frac{\sqrt{aute of 3ut term + value of out term}}{2}$$

$$\Rightarrow 10 = \frac{9+x}{2} \Rightarrow 20 = 9+x$$

$$\Rightarrow x = 11$$