1) C	2) A	3) A	4) D	5) D
6) B	7) C	8) B	9) C	10) A
11) C	12) D	13) B	14) A	15) D
16) B	17) A	18) A	19) B	20) B
21) C	22) A	23) A	24) C	25) A
26) B	27) D	28) A	29) B	30) C
31) A	32) B	33) D	34) B	35) A
36) C	37) D	38) D	39) C	40) D
41) B	42) B	43) B	44) B	45) C
46) C	47) A	48) D	49) A	50) A
51) B	52) B	53) C	54) D	55) C
56) C	57) C	58) C	59) C	60) C
61) D	62) C	63) A	64) B	65) B
66) B	67) C	68) A	69) B	70) A
71) A	72) B	73) A	74) B	75) A
76) A	77) B	78) B	79) D	80) C
81) C	82) B	83) D	84) D	85) D
86) C	87) C	88) A	89) A	90) D
91) D	92) B	93) A	94) D	95) D
96) B	97) C	98) B	99) D	100) D

ANSWER KEY

HINTS & SOLUTION

- 1. (c) 100 Soldiers have ration for 10 days Total ration days = 1000 Ration left for soldiers after 2 days = 800 Soldiers added are 60, Total soldiers = 160 Remaining ration days = $\frac{800}{160}$ = 5 Days
- 2. (a) 1 Men can do work in = $\frac{1}{50}$ Days 1 Women can do work in = $\frac{1}{180}$ Days 5 Men and 6 Women can do work in $5 \times \left(\frac{1}{50}\right) - 6 \times \left(\frac{1}{180}\right)$ $\Rightarrow \frac{1}{10} + \frac{1}{30} = \frac{4}{30} = \frac{2}{15}$

This will be $\frac{15}{2}$ Days or $7\frac{1}{2}$

3. (a) Distance between P & Q is 60 Km Let speed of Q = x km/hSpeed of P = (x - 4) km/hDistance travelled by Q till they meet P = 60 + 12 = 72 kmTime taken by Q till they meet = $\frac{72}{r}$ Distance travelled by P till they meet = 60 - 12 = 48 kmTime taken by P till they meet = $\frac{48}{1000}$ Time taken by both are equal therefore, $\frac{72}{x} = \frac{48}{x-4} \quad \Rightarrow 72x - 288 = 48x$ $\Rightarrow 24x = 288$ $\Rightarrow x = 12$ Speed of P = x - 4 $\Rightarrow 12 - 4 = 8km/h$

- 4. (d) Time = $\frac{\text{Distance}}{\text{speed}} = \frac{92}{6.5 + 5}$ = $\frac{92}{11.5} = 8$
- 5. (d) Assuming cost of product is 100x
 If 25% discount is given then product is sold at 75x

It is said that 75x is actually 25% profit Hence, original price of product was 60x If the discount of 10% was given then product will be sold at 90x and profit would be 30x, since original price is 60x Profit = $\frac{30x}{60x} \times 100 = 50\%$

6. (b)

$$x + y + \frac{xy}{100}$$

$$20 \times 20$$

$$\Rightarrow 20 - 20 - \frac{20 \times 20}{100} = -4\%$$

Refrigerator and camera were sold together at 24000. Therefore, at 4% loss both are sold at 24000 96x = 24000

 $\Rightarrow x = 25000$ Total loss amount = 1000

7. (c) Calculating interest from B $\frac{25000 \times 4 \times 7}{100} = 7000$ Total interest = 11200 Interest received from C = 11200-7000=4200 Money lent to C = $\frac{4200 \times 100}{7 \times 4} = 15000$

8. (b) Given, x + y + z = 17200

Simple Interest will be

$$\Rightarrow \frac{P \times R \times T}{100}$$
For x, $\frac{x \times 5 \times 2}{100} = 0.1x$
For y, $\frac{y \times 6 \times 2}{100} = 0.12y$
For z, $\frac{z \times 9 \times 2}{100} = 0.18z$
Given, Interest is same for all three sums
Hence, $0.1x = 0.12y = 0.18z$
We know $x + y + z = 17200$
 $1.8z + 1.5z + z = 17200$
 $z = 4000$

9. (c) Total Sunday = 5 Other day = 25 Average number of visitors in a month $\Rightarrow \frac{5 \times 510 + 25 \times 240}{30}$ $\Rightarrow \frac{2550 + 6000}{30} = \frac{8550}{30} = 285$

10. (a)

$$x^{2} + 9y^{2} = 6xy$$

$$\Rightarrow 9\left(\frac{y}{x}\right)^{2} - 6\left(\frac{y}{x}\right) + 1 = 0$$

$$\Rightarrow \left(3\frac{y}{x} - 1\right)^{2} = 0$$

$$\Rightarrow \frac{y}{x} = \frac{1}{3}$$

11. (c) Let Income be 4x, 3xGiven, Expenditure for A = 4x - 600For B = 3x - 600 $\frac{4x - 600}{3x - 600} = \frac{3}{2}$ $\Rightarrow 8x - 1200 = 9x - 1800$

- $\Rightarrow x = 600$ \Rightarrow A's Income = 4x = 2400
- 12. (d) Let age of son and father be x, 3x years respectively 6 years from now Present age of son = x 6 Present age of father = 3x 6
 3 years ago age of father was 3x 6 3
 3 years ago age of son was x 6 3
 Given, 3x 9 = 9(x 9)
 ⇒ x = 12
 Hence, present age of father is 30 years
- 13. (b) Income of y = 100 a Income of x = 120 a Difference = 20 a Income of y is less than x by $\frac{20}{120} \times 100$ $= 16\frac{2}{3}\%$
- 14. (a) Overall change in population $x + y + \frac{xy}{100}$ $\Rightarrow 20 - 20 + \frac{20 \times (-20)}{100} = -4\%$

Let initial population be x

Given,
$$\frac{96x}{100} = 5184$$

x = 5400

15. (d)

$$5^{x+1} - 5^{x-1} = 600$$

 $\Rightarrow 5^{x-1}(25-1) = 600$
 $\Rightarrow 5^{x-1} = 25$
 $\Rightarrow 10^{2x} = 10^6 = 1000000$

16. (b)
$$x = 2^{\frac{1}{2}}$$
, $y = 3^{\frac{1}{3}}$, $z = 6^{\frac{1}{6}}$

Multiplying everything with power of 6

$$x=2^{\frac{1}{2}\times 6}=8$$

$$y=3^{\frac{1}{3}\times 6}=9$$

$$z=6^{\frac{1}{6}\times 6}=6$$

Hence, $y > x > z$

17. (a)

$$(ab^{-1})^{2x-1} = (ba^{-1})^{x-2}$$

$$\Rightarrow \left(\frac{a}{b}\right)^{2x-1} = \left(\frac{b}{a}\right)^{x-2}$$

$$\Rightarrow \left(\frac{a}{b}\right)^{2x-1} \left(\frac{a}{b}\right)^{x-2} = 1$$

$$\Rightarrow \left(\frac{a}{b}\right)^{2x-1+x-2} = \left(\frac{a}{b}\right)^{0}$$

$$3x - 3 = 0, x = 1$$

18. (a) Taking x = 2, we get 49Square root of 49 is 7Placing x = 2 in option (a) gives us 7

19. (b) 0.242424... =
$$0.\overline{24} = \frac{24}{99} = \frac{8}{33}$$

20. (b)

$$0.007 + 17.83 + 310.0202$$

$$\Rightarrow \frac{7}{900} + \frac{1783 - 17}{99} + \frac{3100202 - 310020}{9000}$$

$$\Rightarrow \frac{7}{900} + \frac{1766}{99} + \frac{2790182}{9000}$$

$$\Rightarrow \frac{770 + 1766000 + 30692002}{99000} = \frac{32458772}{99000}$$
Given, Option (b) is

$$\frac{32786638 - 327866}{99000}$$

- 21. (c) Let p = 16 a, q = 16b $16a \times 16b = 7168$ $\Rightarrow ab = 28$ Possible pair are (4,7) & (7,4) Numbers are 64, 112 p + q = 176
- 22. (a) Area of a room = 2(6+4) × 2.5 = 50 Area of 5 rooms = 250 1 ltr paint can be used for 20 sq mtr Total paint cans required = $\frac{250}{20} = 12.5$ Hence, 13 cans need to be purchased
- 23. (a) Taking value of m = 1Equation 1, $x^3 + x^2 - x + 2 = 0$ $\Rightarrow (x+2) (x^2 - x + 1)$ Equation 2, $x^2 + x - 2 \Rightarrow (x+2) (x-1)$ HCF is (x+2) which is linear
- 24. (c) Given, numbers are 100x + 10y + z 100z + 10y + xBoth are divisible by 7. Hence, difference is divisible by 7 99x - 99z is divisible by 7 (x - z) is divisible by 7 x, z are one digit numbers and can be
 - (1,8), (8,1), (9,2) (2,9)
- 25. (a) 1 is not a prime number There are 15 prime between 0 to 50 10 prime between 50 to 100 $\Rightarrow 15-10=5$

- **26.** (b) $3^{521} = 3^{130 \times 4 + 1}$ We know, $3^1 = 3$
- 27. (d) $\Rightarrow 17^{4 \times 7} \times 17^{1}$ $\Rightarrow 1^{7} \times 17 = 17$ (We know last digit of 7⁴=1) $\Rightarrow 19^{4 \times 7} \times 19^{1}$ $\Rightarrow 1^{7} \times 19^{1} = 19$ (We know last digit of 9⁴ is 1) 17+19 = 36, 36 when divided by 18 leaves remainder 0
- 28. (a) For a number to be divisible by 10 it must contain powers of 10 or same powers or 2 and 5. Powers of 2 will be more naturally so we will identify power of 5 Powers of 5 are = $5^{(3+6+12+14+30)}$ $\Rightarrow 5^{65}$
- **29.** (b) It takes 5 times for 5'o clock and 8 seconds Hence, for 10 times for 10'o clock and $8 \times 2 = 16$
- 30. (c) Given, 10y + x = k(x + y) 10x + y = m(x + y) 11x + 11y = (k + m)(x + y) 11(x + y) = (k + m)(x + y) $k + m = 11 \implies m = 11 - k$
- **31.** (*a*) Take n = 11 and divided by 4, remainder is 3, when 2n or 22 is divided by 4, remainder is 2

- 32. (b) GP series is always $a, ar, ar^2, ar^3, ar^4, \dots$ Given, $\Rightarrow ar^2 = a + 9$ $\Rightarrow ar = ar^3 + 18$ $\Rightarrow \frac{a(r^2 - 1)}{-ar(r^2 - 1)} = \frac{9}{18}$ $\Rightarrow r = -2$ $\Rightarrow a(4-1) = 9$ a = 3
- **33.** (*d*) 331 is a prime number
- **34.** (*b*) Therefore, sum of two irrational numbers may be rational or irrational
- **35.** (*a*) Since, 589 is divisible by 19, then 589 is a composite number.
- 36. (c) Odd integers are x, x + 2, x + 4Given, Alternate odd integers, hence we will take x, x + 4 x(x+4) = 3x + 12 $\Rightarrow x^2 + 4x = 3x + 12$ $\Rightarrow x^2 + x - 12 = 0$ $\Rightarrow (x+4) (x-3) = 0$ x = 3Numbers are 3 & 7
- **37.** *(d)* From the given options, 451–154=297 Hence, option (d) is the answer
- **38.** (d) $2^{12n} - 6^{4n} = (2^{12})^n - (6^4)^n$ $\Rightarrow (4096)^n - (1296)^n$ $\Rightarrow 2800 \times k$ Hence, last digit will always be zero

- **39.** (c) Upon simplification we can write $\Rightarrow 3 \times (9)^{n} + 2 \times (4)^{n}$ $\Rightarrow 3 \times 9 + 2 \times 4 = 35$
- **40.** (d) $\begin{bmatrix} \log_{10} (5 \log_{10} 10^2) \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \log_{10} (10 \log_{10} 10) \end{bmatrix}^2$ $\Rightarrow \begin{bmatrix} \log_{10} (10) \end{bmatrix}^2 = 1^2 = 1$
- 41. (b) Given, a + b = 3(a + b) ³=3³ ⇒ $a^3 + b^3 + 3ab(a + b) = 27$ ⇒ $a^3 + b^3 + 9ab = 27$
- 42. (b) Taking x = 1 in the given equation $(5x^2 + 14x + 2)^2 - (4x^2 - 5x + 7)^2$ We get 405 Taking x = 1 in $(x^2 + x + 1)$, we get 3 Dividing 405 by 3 gives remainder 0

43. (b)

$$(x+y)^{-1}(x^{-1}+y^{-1})(xy^{-1}+x^{-1}y)^{-1}$$

$$\left(\frac{1}{x+y}\right)\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{x}{y}+\frac{y}{x}\right)^{-1}$$

$$\Rightarrow \left(\frac{1}{x+y}\right)\left(\frac{x+y}{xy}\right)\left(\frac{x^{2}+y^{2}}{xy}\right)^{-1}$$

$$\Rightarrow \frac{1}{xy} \times \frac{xy}{x^{2}+y^{2}} = \frac{1}{x^{2}+y^{2}}$$

$$\Rightarrow (x^{2}+y^{2})^{-1}$$
44. (b) $\frac{1}{a^{m}} - 1 + \frac{1}{a^{m}} - 1$

$$\Rightarrow \frac{a^{n}}{a^{m} - a^{n}} + \frac{a^{m}}{a^{n} - a^{m}}$$
$$\Rightarrow \frac{a^{n}}{a^{m} - a^{n}} - \frac{a^{m}}{a^{m} - a^{n}}$$
$$\Rightarrow \frac{a^{m} - a^{n}}{a^{m} - a^{n}} = -1$$

45. (c) $x + \frac{1}{x} = \frac{x^2 + 1}{x} = \frac{26}{5}$

$$\Rightarrow 5x^2 - 26x + 5 = 0$$

Upon solving, $x = 5, 1/5$

46. (c)

$$x^{8} + \frac{1}{x^{8}} = 47$$

 $\Rightarrow \left(x^{4} + \frac{1}{x^{4}}\right)^{2} = x^{8} + \frac{1}{x^{8}} + 2$
 $\Rightarrow \left(x^{4} + \frac{1}{x^{4}}\right) = \sqrt{47 + 2} = 7$
 $\Rightarrow \left(x^{2} + \frac{1}{x^{2}}\right)^{2} = x^{4} + \frac{1}{x^{4}} + 2$
 $\Rightarrow \left(x^{2} + \frac{1}{x^{2}}\right) = \sqrt{7 + 2} = 3$
 $\Rightarrow \left(x^{2} + \frac{1}{x^{2}}\right)^{3} = x^{6} + \frac{1}{x^{6}} + 3\left(x^{2} + \frac{1}{x^{2}}\right)^{3} = x^{6} + \frac{1}{x^{6}} = 3^{3} - 3(3) = 18$

47. (a) Given,

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

This represents parallel line and while parallel lines can be visualised graphically it cannot be solved graphically as one cannot find values or point of intersection. Option (a) is correct

- **48.** (d) If three lines are parallel, then there are infinite solution. If all three lines are collinear, then there is only one solution. If all three lines are non-parallel and noncollinear, then there are only three solutions. Hence, the given system of equation have here exactly three solutions.
- **49.** (a) Let the number of male employees be x and female employees be yTotal average age of male employees = 52xTotal average age of female employees = 42v 42y Mean age of all employees = $\frac{52x + 42y}{x + y}$

Given,

$$\frac{52x + 42y}{x + y} = 50$$

$$\Rightarrow 52x + 42y = 50x + 50y$$

$$\Rightarrow 2x = 8y$$

$$\Rightarrow \frac{x}{y} = \frac{4}{1}$$
Percentage of male = $\frac{4}{5} \times 100 = 80\%$
Percentage of female = 20%

- 50. (a) Integers are numbers without decimal. Clearly, there are no integers to solve the equation
- 51. (b) Let age of first brother be xLet age of second brother be yLet age of third brother be zAccording to the question, $x + y = 4 \Rightarrow y = 4 - x$ v + z = 6 $z + x = 8 \Rightarrow z = 8 - x$ $\Rightarrow 4 - x + 8 - x = 6$ x = 3.

Therefore, v=1, z=5z - y = 4

52. (b) To intersect the equations should have only 1 solution

$$\frac{a_1}{a_1} \neq \frac{b_1}{b_2}$$
$$\Rightarrow \left(\frac{k}{2} \neq \frac{3}{1}\right) \Rightarrow k \neq 6$$

53. (c)
$$2x + 4y = 6$$

 $4x + 8y = 8$
 $\frac{2}{4} = \frac{4}{8} \neq \frac{6}{8}$
 $\frac{1}{2} = \frac{1}{2} \neq \frac{3}{4}$

This means lines are parallel and are inconsistent, independent and have no solution.

- 54. (d) Number of chairs in row are xNumber of rows = γ Total number of students = xyGiven. xy = (x + 2)(y - 3)xy = (x + 4)(y - 5)Upon solving the equation we get x = 8, v = 15
- 55. (c) Internal assessment changed 250 to 50, which means that marks were changed by 1/5th 1

$$\frac{170-70}{5} = 20$$

56. (c) Upon solving the equation $x = \frac{28}{k}$ Using the value of x in the first equation we get,

$$k^2 = 16 \Rightarrow k = \pm 4$$

- 57. (c) Let the roots of equations be α , β $\alpha\beta = \frac{c}{a}$ $\alpha\beta = 2k^2 - 1$ $\Rightarrow 2k^2 - 1 = 7$ $\Rightarrow 2k^2 = 8, \Rightarrow k^2 = 4 \Rightarrow k = \pm 2$ Equation will be $x^2 \pm 6x + 7$ $D = \sqrt{b^2 - 4ac} = \sqrt{36 - 28} = 2\sqrt{2}$ Hence, roots of equation are irrational
- 58. (c) Given,

$$\frac{m}{100} \times m + \frac{n}{100} \times n = \frac{2}{100} \times mn$$

$$\Rightarrow m^{2} + n^{2} = 2mn$$

$$\Rightarrow (m - n)^{2} = 0$$

$$\Rightarrow m = n$$

- 59. (c) Taking x = 1 in the equation we get $x^{2} + \frac{1}{x^{2}} + 8\left(x + \frac{1}{x}\right) + 14$ $\Rightarrow 1 + 1 + 8(2) + 14$ $\Rightarrow 1 + 1 + 16 + 14 = 32$ Putting x = 1 in option (c), we get 8 32 is divisible by 8
- **60.** (*c*) Shaded portion represent the students who opted for Mathematics, Physics and Electronics only
- 61. (d) Option (d) is correct

62. (c)
$$2\sec^2\theta + \sec\theta - 6 = 0$$

Taking $\sec\theta = x$
 $\Rightarrow 2x^2 + 4x - 3x - 6 = 0$
 $\Rightarrow 2x(x+2) - 3(x+2) = 0$
 $\Rightarrow (2x-3)(x+2) = 0$

DEFENCE DIRECT EDUCATION

$$\Rightarrow x = \sec\theta = \frac{3}{2} \Rightarrow \cos\theta = \frac{2}{3}$$
$$\Rightarrow \sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}$$
$$\cos \sec\theta = \frac{1}{\sin\theta} = \frac{3}{\sqrt{5}}$$

63. (a)

$$\frac{x \times 2^2 \times (\sqrt{2})^2}{8 \times \left(\frac{1}{\sqrt{2}}\right)^2 \times \left(\frac{\sqrt{3}}{2}\right)^2} = (\sqrt{3})^2 - \left(\frac{1}{\sqrt{3}}\right)^2$$
$$\Rightarrow \frac{x \times 4 \times 2 \times 4}{8 \times \frac{1}{2} \times 3} = 3 - \frac{1}{3}$$
$$\Rightarrow \frac{8x}{3} = \frac{8}{3} \Rightarrow x = 1$$

- 64. (b) Given, $\cos x + \cos^2 x = 1$ $\Rightarrow \cos x = 1 - \cos^2 x$ $\Rightarrow \cos x = \sin^2 x$ On squaring both sides we get $\cos^2 x = \sin^4 x$ $1 - \sin^2 x = \sin^4 x$ $\Rightarrow \sin^4 x + \sin^2 x = 1$
- 65. (b) Given, $0^{\circ} < \theta < 90^{\circ}$ Taking angle 45° $\left[\left(1 - \sin^2 \theta \right) \sec^2 \theta + \tan^2 \theta \right] \left(\cos^2 \theta + 1 \right)$ $\Rightarrow \left[\left(1 - \frac{1}{2} \right) \times 2 + 1 \right] \left(\frac{1}{2} + 1 \right)$ $\Rightarrow \left[\frac{1}{2} \times 2 + 1 \right] \left(\frac{3}{2} \right) = 3$ 3 is greater than 2

- 66. (b) Angle subtended = $\frac{\text{Arc}}{\text{Radius}}$ $\frac{4\pi}{8} = \frac{\pi}{2}$
- 67. (c) Given, $0 < \theta < \phi < 90^{\circ}$ Taking, $\theta = 30^{\circ}$, $\phi = 45^{\circ}$ $\left(\sin^2\theta + \cos^2\phi\right)^2 = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$ $\Rightarrow 0.75 < 2$

- 68. (a) Taking angle as $\pi/3$ or 60° We get $\frac{1}{2} + \sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{1+3}{2} = 2$
- **69.** (b) We know cos 90° is zero. Anything multiplied will give us 0
- 70. (a) We know value of cos decreases as it goes from 0 to 90 $cos60^{\circ} = 1/2$ This means cos is lesser than 1/2 at any value of θ goes from $cos60^{\circ}$ to $cos90^{\circ}$ Therefore $\theta \le \frac{\pi}{3}$
- 71. (a) Taking angle as 45°, we get $\cot\theta \ (1 + \sin\theta) = 4m \Rightarrow \frac{\sqrt{2} + 1}{4\sqrt{2}} = m$

$$\cot \theta (1 - \sin \theta) = 4n \Rightarrow \frac{\sqrt{2} - 1}{4\sqrt{2}} = n$$

Upon solving option (b) satisfy the value

72. (b) Let the height of the tower be h and $\angle CBD = \theta$ then $\angle DAC = 90^\circ - \theta$ (Both angles are complementary)

74. *(b)*

75. (*a*) we know that, if the length of square and rhombus are same, then the area should be same.

$$x: y = 1: 1$$

- 76. (a) 1m = 1000 mm10 m = 10000 mm Required number = $\frac{10000}{200} = 50$
- 77. (b) Distance covered by man diagonally is $\frac{3 \times 100}{60} = 50m$

Area of field
$$= \frac{1}{2}d^2$$

 $= \frac{1}{2} \times (50)^2 = 1250$

- 78. (b) Given sides are 9, 10, 11 $s = \frac{9+10+11}{2} = 15$ Area = $\sqrt{s(s-a)(s-b)(s-c)}$ $\Rightarrow \sqrt{15(15-9)(15-10)(15-11)}$ $\Rightarrow \sqrt{15 \times 6 \times 5 \times 4} = 30\sqrt{2} = 42.3$
- 79. (d) Area of pathway = $10 \times 4.5 = 45$ Area of each tile = $\frac{50 \times 50}{100 \times 100} = 0.25$ Required tiles = $\frac{45}{0.24} = 180$ Cost of 1 tile = $\frac{100}{20} = ₹5$ Total cost = ₹900
- 80. (c) Area of rectangle = 72 feet Given, width of border = 6 inch = 0.5 ft Length of inner rectangle = 12 - 0.5 - 0.5Breadth of inner rectangle = 6 - 0.5 - 0.5Area of border = 72 - 55 = 17 feet

- 81. (c) Surface Area of cuboid $2(l \times b + b \times h + l \times h)$ $\Rightarrow 2(12 \times 72 + 12 \times 12 + 72 \times 12)$ $\Rightarrow 2(864 + 144 + 864)$ $\Rightarrow 2 \times 1872 \Rightarrow 3744$
- 82. (b) According to question, Volume of cylinder = Volume of bar $\Rightarrow \pi r^2 h$ = base area of block × length

$$\Rightarrow \frac{22}{7} \times \left(\frac{1.5}{2}\right)^2 \times 3.5 = \frac{5}{100} \times \frac{5}{100} \times L$$
$$\Rightarrow L = 2475$$

83. (d) Volume of conical flask = $\frac{1}{3}\pi r^2 h$

Radius of cylindrical flask = 2rHeight of cylindrical flask = x

Volume of cylindrical flask = π (2r) ²*x* According to the question,

$$\frac{1}{3}\pi r^2 h = 4\pi r^2 x \quad \Rightarrow x = \frac{h}{12}$$

84. (d) Let volume of cone be V_1 , V_2

$$\frac{V_1}{V_2} = \frac{64}{1} = \frac{r^2 h}{R^2 H}$$
$$\frac{r}{R} = \frac{h}{H}, \text{ being similar } \Delta$$
$$\Rightarrow \frac{h^3}{H^3} = \sqrt[3]{\frac{64}{1}} \Rightarrow \frac{h}{H} = \frac{4}{1}$$
$$\Rightarrow \frac{1}{4} \times 60 = 15 \text{ cm}$$

Height of smaller cone is 15 cm Height from base to the cut will be 45 cm

85. (d) Draw a line GF through C parallel to AB and DE

- 86. (c) Option (c) is correct
- 87. (c) Given, y = 6x, z = 5x $x + 5x + 6x = 180^{\circ}$ $\Rightarrow 12x = 180^{\circ} \Rightarrow x = 15^{\circ}$
- 88. (a) Area of all three sectors $= 3 \times \frac{\pi}{3} \times \frac{(2)^{2}}{2} = 2\pi$ Area of equilateral triangle $\frac{\sqrt{3}}{4} \times 4^{2} = 4\sqrt{3}$

Area of shaded portion = $4\sqrt{3} - 2\pi$

- **89.** *(a)* There can only be one circumcircle for a triangle
- 90. (d) XP+YQ+XY = 40 \Rightarrow 2XP + XY = 40 \triangle ABC is equilateral triangle

 $\angle BXP = \angle BAC \& \angle BPX = \angle BCA$ Therefore, $\triangle XBP$ is an equilateral triangle Similarly, ΔXAY is an equilateral triangle XY = AX = yGiven, AX + AB = 30, we can say XP + XY = 30Also, 2XP + XY = 40Upon solving XP = 10 PQ = BC - BP - QCPQ = 30-10-10 = 10

91. (d) Altitude of
$$\triangle ABC = \frac{\sqrt{3}}{2}a$$

In equilateral Δ , incentre, orthocentre, circumcentre, centroid all are coincident. and centroid divides the altitude in a ratio of 2:1

Therefore, OC is 2/3 of altitude

$$OC = \frac{\sqrt{3}}{2}a \times \frac{2}{3} = \frac{a}{\sqrt{3}}$$

$$OC = OD = \text{radius of circle}$$

$$DF = b, \Rightarrow DE = \frac{b}{2}$$
In $\triangle ODE$, $\cos 60^\circ = \frac{DE}{OD} = \frac{\frac{b}{2}}{\frac{a}{\sqrt{3}}}$

$$\Rightarrow \frac{1}{2} = \frac{\sqrt{3}b}{2a} \Rightarrow a = \sqrt{3}b$$
$$\Rightarrow a^2 = 3b^2$$

- **92.** (*b*) We know that in a square diagonals are equal and bisect each other at 90°. Hence, the required quadrilateral is a square.
- **93.** (*a*) D is the diameter of each outer circle A square is drawn through the mid points of each outer circle. The diagonal of square will pass through the inner circle

Diagonal of square = $\sqrt{D^2 + D^2} = D\sqrt{2}$ Diameter of shaded region = $D\sqrt{2} - D$ $\Rightarrow D(\sqrt{2} - 1)$

94. (d) Given, side of equilateral triangle l Inradius of circle $r = \frac{l}{2\sqrt{3}}$ Therefore, $D = \frac{l}{\sqrt{3}}$

When a square is inscribed in a circle, the diagonal of the square is equal to the diameter of the circle.

Let the side of square be x

$$x\sqrt{2} = D$$

$$\Rightarrow x\sqrt{2} = \frac{l}{\sqrt{3}} = \frac{l}{\sqrt{6}}$$

$$\Rightarrow x^{2} = \frac{l^{2}}{6}$$

95. (d) Given, sides are 6, 8 \therefore diagonal is 10. Hence, radius = 5 Area of circle = $\pi r^2 = 25\pi$ $\Rightarrow \text{ Area of rectangle} = a \times b = 6 \times 8$ Required area = $25\pi - 48 = 30.5$

- **96.** (b) Total expenditure = 24 lakhs Angle of largest component = $\frac{7}{24} \times 360^{\circ}$ = 105°
- 97. (c) Difference between expenditure of largest and smallest component 7 - 1.5 = 5.5Required angle $= \frac{5.5}{24} \times 360^\circ = 82.5^\circ$
- **98.** (b) Total number of bulbs = 1007 + x + 40 + y + 10 + 2 = 100

$\Rightarrow x + y = 41$	
--------------------------	--

Life of bulbs (in hours)	Number of bulbs	Cumulative Frequency
8-13	7	7
13-18	x	7 + x
18-23	40	47 + x
23-28	У	47 + x + y
28-33	10	57 + x + y
33-38	2	59 + x + y
	N = 100	

Median life is 20, Hence, median interval will be (18-23)

$$l = 18, \frac{N}{2} = 50, \ c = 7 + x, \ f = 40$$
$$h = 5 \Rightarrow Median = l + \frac{\left(\frac{N}{2} - C\right)}{f} \times h$$
$$20 = 18 + \frac{(50 - 7 - x)}{40} \times 5 \Rightarrow x = 27$$

99. (d) $x + y = 41 \Rightarrow y = 41 - 27 = 14$

100. (d) Density of Class Interval = $\frac{30}{15 - 10}$