ANSWER KEY

1) C	2) C	3) C	4) C	5) C
6) B	7) C	8) A	9) C	10) D
11) B	12) D	13) B	14) B	15) A
16) D	17) D	18) D	19) A	20) C
21) C	22) C	23) B	24) B	25) C
26) D	27) D	28) C	29) B	30) C
31) B	32) C	33) A	34) B	35) B
36) B	37) B	38) A	39) B	40) B
41) A	42) D	43) A	44) B	45) D
46) B	47) C	48) D	49) C	50) A
51) B	52) A	53) D	54) D	55) C
56) B	57) A	58) B	59) B	60) D
61) B	62) C	63) B	64) D	65) B
66) C	67) C	68) C	69) C	70) C
71) A	72) D	73) C	74) B	75) D
76) C	77) A	78) C	79) B	80) D
81) D	82) A	83) B	84) D	85) D
86) D	87) B	88) B	89) C	90) D
91) B	92) B	93) D	94) A	95) B
96) B	97) C	98) C	99) D	100) B

HINTS & SOLUTION

- 1. (c) One day work of 1st son = $\frac{1}{6}$ One day work of second son = $\frac{1}{12}$ One day work of them working together $\Rightarrow \frac{1}{6} + \frac{1}{12} = \frac{2+1}{12} = \frac{1}{4}$ Father will finish the work in 4 days
- 2. (c) $\frac{M_1D_1}{W_1} = \frac{M_2D_2}{W_2}$ $\Rightarrow \frac{18 \times 5}{1440} = \frac{M_2 \times 8}{1920}$ $\Rightarrow M_2 = \frac{1920 \times 18 \times 5}{8 \times 1440} = 15$
- 3. (c) One day work of Ram = $\frac{1}{6}$ One day work of Shyam = $\frac{1}{12}$ One day work of them working together $\Rightarrow \frac{1}{6} + \frac{1}{12} = \frac{2+1}{12} = \frac{1}{4}$ Two days work together = $\frac{1}{2}$ (half of the work)
- 4. $(c) \log_{10} 0.0001 = a$ $a = \log_{10} \frac{1}{(10)^4}$ $\Rightarrow \log_{10} 1 - \log_{10} (10)^4$ = 0 - 4 = -4

- 5. (c) $\frac{1}{3}\log_{10}125 - 2\log_{10}4 + \log_{10}32 + \log_{10}1$ $\frac{1}{3}\log_{10}(5)^{3} - 2\log_{10}(2)^{2} + \log_{10}(2)^{5} + 0$ $\log_{10}5 + \log_{10}2 = \log_{10}5 \times 2$ $\Rightarrow \log_{10}10 = 1$
- 6. (b) It can be written as $\frac{x^{8} + 4 + 4x^{4} 4x^{4}}{x^{4} + 2x^{2} + 2}$ $\Rightarrow \frac{x^{8} + 4x^{4} + 4 4x^{4}}{x^{4} + 2x^{2} + 2}$ $\Rightarrow \frac{(x^{4} + 2)^{2} (2x^{2})^{2}}{x^{4} + 2x^{2} + 2}$ $\Rightarrow \frac{(x^{4} + 2x^{2} + 2)(x^{4} 2x^{2} + 2)}{x^{4} + 2x^{2} + 2}$ $\Rightarrow x^{4} 2x^{2} + 2$
- 7. (c) $x^{2}(y-z) + y^{2}(z-x) - z(xy-yz-zx)$ $x^{2}y - x^{2}z + y^{2}z - y^{2}x - zxy + z^{2}y + z^{2}x$ $xy(x-y-z) - z(x^{2}-y^{2}) + z^{2}(x+y)$ xy(x-y-z) - z(x+y)(x-y-z) (x-y-z)(xy-yz-zx)
- 8. (a) Remainder $3(2y)^3 - 2(2y)^2y - 13(2y)y^2 + 10y^3$ $\Rightarrow 24y^3 - 8y^3 - 26y^3 + 10y^3$ $\Rightarrow 34y^3 - 34y^3 = 0$
- 9. (c) Upon dividing Quotient by $x^2 + 2$ We get remainder -2x + 10k - 10

It is given
$$-2x$$

 $-2x = -2x + 10k - 10$
 $\Rightarrow k = 1$

$$\frac{3}{2} \text{quintal} = \frac{3}{2} \times 100 = 150 \text{ kg}$$
Given,
$$\frac{15}{4} \text{kg} = 1 \text{ unit}$$

$$\Rightarrow 1 \text{ kg} = \frac{4}{15} \text{unit}$$

$$\Rightarrow 150 \text{ kg} = \frac{4}{15} \times 150 = 40$$

$$x + y = 362$$

$$1\frac{1}{2}x + 2y = 554$$

$$\Rightarrow$$
 3x + 4y = 1108

Upon solving both equations

$$x = 340, y = 22$$

Reservation charge = 22

12. (*d*) Let greater number be x and smaller number be y

$$x - y = 45$$

$$\Rightarrow x = 4y$$

$$4y - y = 45 \Rightarrow y = 15$$

$$\Rightarrow x = 4 \times 15 = 60$$

Required sum = x + y = 75

13. (b) Fare from P to
$$Q = \xi x$$

Fare from P to
$$R = \xi y$$

According to question x + y = 42

$$5x + 10y = 350$$

Upon solving we get, x = 14, y = 28

14. (b) Let smaller number be
$$x$$

Larger number be $80 - x$

According to question,
$$80 - x = 4x + 5$$

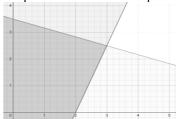
$$\Rightarrow 5x = 75 \Rightarrow x = 15$$

15. (a) Given equations are

$$5x - 2y = 10$$

$$2x + 6y = 21$$

Upon solving,
$$x = 3$$
, $y = \frac{5}{2}$


Their interaction point is (3, 5/2)

The shaded region in the question graph is below the original region

Hence, solution set is

$$2x + 6y \le 21$$
, $5x - 2y \le 10$

Graph for the above two equation is

16. (d) Since α , β are the roots of the equation

$$x^2 - 3x + 2 = 0$$

Therefore,
$$\alpha + \beta = 3$$
, $\alpha\beta = 2$

$$\alpha + 1 + \beta + 1 = \alpha + \beta + 2$$

$$\Rightarrow$$
 3 + 2 = 5

$$\Rightarrow$$
 (α + 1) (β + 1) = $\alpha\beta$ + α + β + 1

$$2+3+1=6$$

Required equation is

$$x^2 - (\alpha + 1 + \beta + 1)x +$$

$$(\alpha + 1)(\beta + 1) = 0$$

$$\Rightarrow x^2 - 5x + 6 = 0$$

17. (d) $\alpha \& \beta$ are roots of the equation

$$7x^{2} + 12x + 18 = 0$$

$$\alpha + \beta = -\frac{12}{7}, \quad \alpha\beta = \frac{18}{7}$$

$$\alpha^{2} + \beta^{2} + 2\alpha\beta = \frac{144}{49}$$

$$\Rightarrow \alpha^{2} + \beta^{2} = \frac{144}{49} - \frac{36}{7} = -\frac{108}{49}$$

$$\Rightarrow \frac{\alpha^{2} + \beta^{2}}{\alpha\beta} = \frac{-\frac{108}{49}}{\frac{18}{18}} = -\frac{6}{7}$$

18.
$$(d) \frac{x(x-1) - m(m+1)}{(x-1)(m-1)} = \frac{x}{m}$$

 $m(x^2 - x - m - 1) = x(mx - x - m + 1)$
 $\Rightarrow mx^2 - mx - m(m+1)$
 $\Rightarrow mx^2 - x^2 - mx + x$
 $\Rightarrow x^2 - x - m(m+1) = 0$
Given, roots are $\alpha \& \alpha$
 $\alpha + \alpha = 1$, $\alpha \times \alpha = -m(m+1)$
 $\alpha = \frac{1}{2} \Rightarrow \left(\frac{1}{2}\right)^2 = -m(m+1)$
 $\Rightarrow 4m^2 + 4m + 1 = 0$
 $\Rightarrow (2m+1)^2 = 0 \Rightarrow m = -\frac{1}{2}$

19. (a)
$$\sqrt{\frac{x}{x+3}} - \sqrt{\frac{x+3}{x}} = -\frac{3}{2}$$

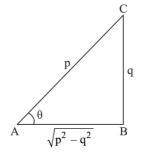
Let $y = \sqrt{\frac{x}{x+3}}$
 $y - \frac{1}{y} = -\frac{3}{2}$
 $2y^2 + 3y - 2 = 0$
Upon solving, $y = \frac{1}{2}$

$$\Rightarrow \sqrt{\frac{x}{x+3}} = \frac{1}{2}$$

Squaring both sides

$$\Rightarrow \frac{x}{x+3} = \frac{1}{4}$$

$$\Rightarrow 4x = x+3 \Rightarrow x=1$$


- 20. (c) -1.5 is a root of $ax^2 + x 3 = 0$ Then, $a(-1.5)^2 + (-1.5) - 3 = 0$ $\Rightarrow 2.25a - 4.5 = 0$ $a = \frac{4.5}{2.25} \Rightarrow a = 2$
- 21. (c) $n(A \cap B) = 2n$ $\Rightarrow n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $\Rightarrow 2n + 4n - 2n = 4n$

Minimum number of elements is 4n

- **22.** (c) Given, A = {1,2,3,4} So, required subsets are {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4} and {1,2,3,4}
- either Hindi or English = (50 + 40 15)= 75 Percent of candidates who passed in both subject = 100 - 75 = 25%

23. (b) Percent of candidates who failed in

24. (b)

DEFENCE DIRECT EDUCATION

$$\cos \theta = \frac{p}{q}$$

$$b = \sqrt{p^2 - q^2}$$

$$In \ \Delta ABC, \ \tan \theta = \frac{q}{\sqrt{p^2 - q^2}}$$

$$\Rightarrow \sqrt{p^2 - q^2} \times \tan \theta = q$$

25. *(c)* We know that $\sin \theta$ is increasing from 0° to 90°

$$\sin 30^{\circ} = \frac{1}{2}$$

$$\sin 32^{\circ} > \frac{1}{2}$$

26. (d)
$$\sin x - \cos x = 0$$

 $\sin x = \cos x$
 $\Rightarrow x = 45^{\circ} = \frac{\pi}{4}$
 $\Rightarrow \sin^{4} x + \cos^{4} x = \sin^{4} \frac{\pi}{4} + \cos^{4} \frac{\pi}{4}$
 $\Rightarrow \left(\frac{1}{\sqrt{2}}\right)^{4} + \left(\frac{1}{\sqrt{2}}\right)^{4} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

27. (d)
$$\tan \theta = \frac{3}{4} = \frac{P}{B}$$

 $H = \sqrt{P^2 + B^2} = \sqrt{9 + 16} = \sqrt{25} = 5$
Let hypotenuse = x

$$\sin \theta = \frac{2}{x} = \frac{3}{5} \Rightarrow x = \frac{2 \times 5}{3} = \frac{10}{3}$$

28. (c) Given,
$$\sin(x - y) = \frac{1}{2}$$

 $\cos(x + y) = \frac{1}{2}$
 $\Rightarrow \sin(x - y) = \sin 30^{\circ}$
 $\cos(x + y) = \cos 60^{\circ}$
 $\Rightarrow x - y = 30^{\circ}, x + y = 60^{\circ}$
 $x = 45^{\circ}, y = 15^{\circ}$

29. (b) In 60 min h hand gains = 5min In 1 min h hand gains = $\frac{5}{60}$ min.

In 10 min, h hand gains =
$$\frac{5}{60} \times 10 = \frac{5}{6} min$$

There is 15 min gap between hours and minutes hands but in 10 min h hand gains 5

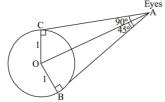
$$\frac{3}{6}min \text{ more}$$
Actual gap = $15 + \frac{5}{6} = \frac{95}{6}$

Actual gap = $15 + \frac{1}{6} = \frac{1}{6}$ In 1 min, there are 6°

In
$$\frac{95}{6}$$
 min, there are $\frac{95}{6} \times 6^{\circ}$
 $\Rightarrow \frac{95}{6} \times 6 \times \frac{\pi}{180} = \frac{19\pi}{36}$ radian

30. (c) Given, $sinx cosx = \frac{1}{2}$ $(sinx - cosx)^2 = (sin^2x + cos^2x)$ - 2sinxcosx $\Rightarrow 1 - 2\left(\frac{1}{2}\right) = 0$

31. (b)
$$\cot^{2}\theta - \frac{1}{\sin^{2}\theta} = \frac{\cos^{2}\theta}{\sin^{2}\theta} - \frac{1}{\sin^{2}\theta}$$

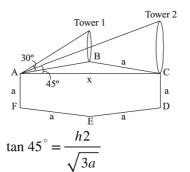

$$\Rightarrow \frac{\sin^{2}\theta}{\sin^{2}\theta} = -1$$

32. (c) sinx = cosy $\angle x \& \angle y$ are acute angles, then

$$x = y = 45^\circ = \frac{\pi}{4}$$

Hence,
$$x + y = \frac{\pi}{2}$$

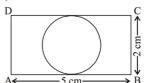
- 33. (a) $\frac{\cos x}{\cos y} = n$, $\frac{\sin x}{\sin y} = m$ $(m^2 - n^2)\sin^2 y = \left(\frac{\sin^2 x}{\sin^2 y} - \frac{\cos^2 x}{\cos^2 y}\right)\sin^2 y$ $\Rightarrow \frac{(1 - \cos^2 x)\cos^2 y - \cos^2 x(1 - \cos^2 y)}{\cos^2 y}$ $\Rightarrow \frac{\cos^2 y - \cos^2 x}{\cos^2 y} = 1 - n^2$
- 34. (b) Given equation can be written as $\cos^2(3x 9^\circ) = 1 \sin^2 60^\circ$ $\Rightarrow \cos^2(3x - 9^\circ) = \cos^2 60^\circ$ $\Rightarrow 3x - 9^\circ = 60^\circ$ $\Rightarrow 3x = 69^\circ \Rightarrow x = 23^\circ$
- **35.** (b) Let O = Centre of the balloon OB = OC = Radii of the balloon


In
$$\triangle OBA$$
, $\sin 45^{\circ} = \frac{OB}{OA} = \frac{1}{\sqrt{2}} = \frac{1}{OA}$
 $\Rightarrow OA = \sqrt{2}$

36. (b) Let the side of a regular hexagon be 'a' Let height of tower 1 = h1 and tower 2 be h2

Height of tower
$$1 = h1$$

$$\Rightarrow \tan 30^\circ = \frac{h1}{a}$$


$$\Rightarrow a \times \frac{1}{\sqrt{3}} = h1$$

$$\Rightarrow h2 = \sqrt{3}a$$

Ratio of h1 & h2 $\Rightarrow \frac{a}{\sqrt{3}} = \frac{1}{3}$

- **37.** *(b)* The angle of elevation and angle of depression are measured with the horizontal line only.
- **38.** (a) It will be a centroid
- 39. (b) A circle of radius 1cm can be cut off

Area of rectangular sheet = 10 cm Area of circle = $\pi \times 1^2 = \pi$ Required area = $10 - \pi$

40. (b) Distance in 1 revolution = $\frac{400}{1000}m$

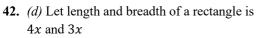
$$\Rightarrow \textit{Circumf erence} = \pi \times d = \frac{44000}{1000}$$

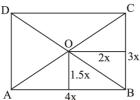
$$d = \frac{44000 \times 7}{1000 \times 22} = 14 \text{ cm}$$

41. (a) BC =
$$\sqrt{x^2 + y^2}$$

Area of \triangle ABC = $\frac{1}{2} \times xy$

Area of semi circle BACB =
$$\frac{\pi(x^2 + y^2)}{4}$$


Area of shaded portion = Semi circle


ABDA + Semi circle AECA -

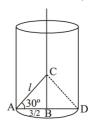
(Semi circle BACB – Area of \triangle ABC)

$$\Rightarrow \frac{\pi x^2}{4} + \frac{\pi y^2}{4} - \pi \left(\frac{x^2 + y^2}{4}\right) + \Delta ABC$$

 \Rightarrow Area of \triangle ABC

Area of
$$\triangle BOC = \frac{1}{2} \times 3x \times 2x = 3x^2$$

Area of
$$\triangle AOB = \frac{1}{2} \times 4x \times 1.5x = 3x^2$$


Ratio = 1:1

43. (a) Volume of cone.
$$C = \frac{1}{3}\pi R^2 H$$

Since, $H = R$, $C = \frac{1}{3}\pi R^3$

Volume of hemisphere,
$$H = \frac{2}{3}\pi R^3$$

$$C: H = 1: 2$$

$$\cos 30^\circ = \frac{\frac{3}{2}}{l} \Rightarrow l = \frac{\frac{3}{2}}{\sqrt{\frac{3}{2}}} = \sqrt{3}$$

Area of cone ACD =
$$\pi r l$$

$$\Rightarrow \pi \times \frac{3}{2} \times \sqrt{3}$$

$$= \frac{3\sqrt{3}\pi}{2}$$

$$\Rightarrow \frac{1}{2}\pi \times 4 \times 4 \times 2$$

Volume of spherical ball

$$\Rightarrow \frac{4}{3}\pi \left(\frac{2.5}{10}\right)^3$$

Number of balls =
$$\frac{\frac{1}{2}\pi \times 4 \times 4 \times 2}{\frac{4}{3}\pi \times \left(\frac{2.5}{10}\right)^3} = 768$$

46. *(b)* Surface area of sphere = 3 (Volume of sphere)

$$4\pi r^2 = 3 \times \frac{4}{3} \times \pi r^3 \Rightarrow r = 1$$

Diameter = 2r = 2cm

47. (c) Volume of wood = Volume of lead pencil – Volume of lead $\pi(0.4)^2 \times 21 - \pi \times (0.1)^2 \times 21$ $\Rightarrow 21 \times \frac{22}{7} \times (0.16 - 0.01)$

$$\Rightarrow$$
 66(0.15) = 9.9 cu cm

48. (d) Since the outer edges of cubical box is 5 cm

Surface area of outer cubical box

$$=5 (edge)^2$$

$$5 \times 5^2 = 125$$

Surface area of inner cubical box

$$\Rightarrow 5 \times 4^2 = 80$$

Total surface area = 125 + 80 = 205

49. *(c)* Volume of bigger cone

$$\frac{1}{3}\pi(6)^2 \times 8 = 96\pi$$

Volume of smaller cone

$$\frac{1}{3}\pi \times (1)^2 \times 2 = \frac{2\pi}{3}$$
Number of cones =
$$\frac{96\pi}{\frac{2\pi}{3}} = 144$$

50. (a) R = 2r

According to the question,

Volume of cylinder = volume of cone

$$\Rightarrow \pi r^2 h = \frac{1}{3} \pi R^2 H$$

$$\Rightarrow r^2h = \frac{1}{3}(2r)^2H$$

$$H = \frac{3h}{4}$$

- 51. (b) Radius cone = $\frac{126}{2}$ = 63 Height of cone = 21 - 5 = 16Slant height = $\sqrt{63^2 + 16^2}$ $\Rightarrow \sqrt{3969 + 256} = \sqrt{4225} = 65$
- 52. (a) Radius of cylinder = 63 Height = 5 Curved surface area = $2\pi rh$ $\Rightarrow 2 \times \frac{22}{7} \times 63 \times 5 = 1980$
- 53. (d) Canvas = Curved surface area of cylinder + curved surface area of cone $\Rightarrow 2\pi rh + \pi rl$

$$\Rightarrow 1980 + \frac{22}{7} \times 63 \times 65 = 14850$$

54. (d)
Given, Volume of small cone
Volume of large cone = $\left(\frac{r}{R}\right)^3$

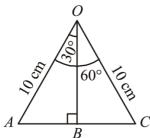
$$\Rightarrow 1 - \frac{\text{Volume of small cone}}{\text{Volume of large cone}} = 1 - \left(\frac{1}{2}\right)^3$$

$$\Rightarrow \frac{\text{Vol large cone} - \text{Vol small cone}}{\text{Vol of large cone}} = \frac{7}{8}$$

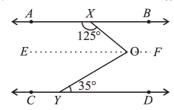
$$\Rightarrow \frac{\text{Vol of frustum}}{\text{Vol of large cone}} = \frac{7}{8}$$

55. (c) $2\pi rh = 1$ litre. Paint required = $2\pi rh + 2\pi (r+1) h + 2\pi [(r+1) + r]$

$$\Rightarrow \frac{\text{rh} + (r+1) + 2r + 1}{\text{rh}} = \frac{21 + 28 + 7}{3 \times 7}$$


$$=\frac{8}{3}$$

56. (b) In $\triangle AOB$,


$$\sin 30^\circ = \frac{AB}{OA} \Rightarrow \frac{1}{2} = \frac{AB}{10}$$

$$\Rightarrow$$
 AB = 5cm

Now,
$$AC = 2AB = 2 \times 5 = 10 cm$$

- **57.** (a) The locus of P is a straight line which is the right bisector of AB.
- **58.** (b) Draw a line EF such that EF||AB||CD

Now, AB//EF

$$\angle AXO + \angle XOE = 180^{\circ}$$
 (Interior \angle les)

$$\Rightarrow \angle XOE = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

$$EF \parallel CD$$

$$\Rightarrow \angle EOY = \angle OYD = 35^{\circ}$$

$$\Rightarrow \angle XOY = \angle XOE + \angle EOY$$

$$\Rightarrow 55^{\circ} + 35^{\circ} = 90^{\circ}$$

- **59.** (b) A circle is the lows of any point that sum of square of its distance from any two fixed point is always constant
- **60.** (d) Hour hand moves by 30° in 1 hour In one hour movement of hour hand = 30°

In
$$\left(5 + \frac{10}{60}\right)$$
 hour movement is
$$30\left(5 + \frac{10}{60}\right)$$

$$\Rightarrow 30 = \left(5 + \frac{1}{6}\right)$$

$$\Rightarrow 30 \times \frac{31}{6} = 155^{\circ}$$

- **61.** (b) Hour hand moves by 30° in 1 hour Hence, In 10 min hour hand will move by 5°
- 62. (c) of the circle = θ Then, $\frac{\theta}{360} \times 2\pi R = 33$ $\Rightarrow \theta = \frac{33 \times 360 \times 7}{2 \times 22 \times 14} = 3 \times 45$ $= 135^{\circ}$
- 63. (b) Let other angle of each triangle be a, b, c, d $\Rightarrow (1+2+a) + (3+4+b) + (5+6+c)$ $+ (7+8+d) = 180^{\circ} \times 4$ $\Rightarrow 1+2+3+4+5+6+7+8=720^{\circ} - (a+b+c+d)$ $\Rightarrow 1+2+3+4+5+6+7+8=$ $720^{\circ} - 360^{\circ} = 360^{\circ}$
- **64.** (d) Given, DE:BE = 3:5 $\frac{Area \ of \ \Delta \ ABC}{Area \ of \ \Delta \ DAE} = \left(\frac{BC}{DE}\right)^2 = \frac{25}{9}$
- **65.** (b) $\angle DAB + \angle ABD + \angle BDA = 180^{\circ}$ ($30^{\circ} + x$) + $45^{\circ} + 90^{\circ} = 180^{\circ}$ $x = 15^{\circ}$

In
$$\triangle$$
 ACB,
 \angle CAB + \angle ABC + \angle BCA = 180°
 \Rightarrow 30° + (45° + y) + 90° = 180°

$$y=15^{\circ}$$

2x - y=2×15° - 15° = 15°

66. (c) Suppose the smaller and larger sides of a right triangle be x & y, respectively. By given condition,

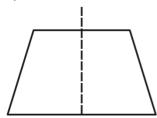
$$x^2 + y^2 = (3\sqrt{10})^2$$

$$\Rightarrow x^2 + y^2 = 90$$

$$9x^2 + 4y^2 = 405$$

On solving equation, x=3. y=9

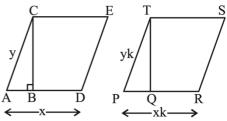
67. (c) $\angle AMC + \angle CMD = \angle BMD$ $+ \angle CMD \Rightarrow \angle AMD = \angle BMC$ $\Rightarrow \angle DAM = \angle CBM$


$$AM = BM$$

By ASA, $\triangle ADM \cong \triangle BCM$

68. (c) Here we see $(50)^2 = (30)^2 + (40)^2$ $\Rightarrow 2500 = 900 + 1600$

It means given scores are sides of a rectangle


So, other diagonal should be 50 runs

69. *(c)* Isosceles trapezium has only line of symmetry.

70. (c) Let the sides of parallelogram be x, y, xk, yk

Sides of parallelogram are in ratio 1: k

$$\Delta ABC \sim \Delta PQT$$

$$\Rightarrow \frac{AC}{PT} = \frac{BC}{QT}$$

$$\Rightarrow \frac{BC}{OT} = \frac{y}{vk} = \frac{1}{k}$$

Let
$$BC = z$$
, $QT = zk$

Ratio of parallelogram

$$= \frac{xz}{zk \times zk} = \frac{1}{k^2}$$

71. (a) In $\triangle ABE$, $\angle EAB = \angle ABE = 60^{\circ}$ $\angle AEB = 60^{\circ}$

 Δ ABE is an equilateral triangle

$$AB = BE = EA$$

Perimeter of \triangle ABE = 6

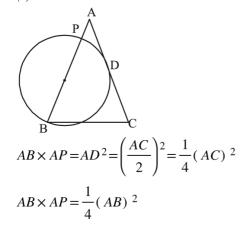
$$AB + BE + EA = 6$$
, $AB = 2$

In \triangle ADE, AE²=AD²+ED²

$$4 = AD^2 + 1$$

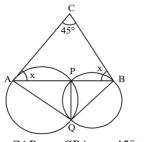
E is mid point of CD, AD = $\sqrt{3}$

Area = AB
$$\times$$
 AD = $2 \times \sqrt{3}$


72. (d) In parallelogram,

$$d_1^2 + d_2^2 = 2(l^2 + b^2)$$

 $d^2 + (10)^2 = 2(64 + 144)$

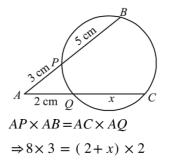

$$u + (10) = 2(04+1)$$

 $d^2 = 2 \times 208 - 100$

$$d^2 = 416 - 100 = 316$$
$$d = \sqrt{316} = 17.76 \implies d > 12$$

- 74. (b) By using theorem, $(PT)^{2} = PA \times PB$ $\Rightarrow (6)^{2} = 4 \times (4 + AB)$ $\Rightarrow \frac{36}{4} = 4 + AB \Rightarrow AB = 5 \text{ cm}$
- **75.** (d) The tangents drawn from an outer point on a circle are always equal = $\angle CBA$

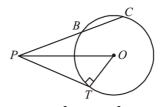
$$\angle CAB = \angle CBA \implies 45^{\circ} + x + x = 180^{\circ}$$


$$2x = 180^{\circ} - 45^{\circ}$$

$$\Rightarrow x = 67 \frac{1}{2}^{\circ} = \angle AQP = \angle BQP$$

(Alternate interior segments properties)

$$\angle AQB = \angle AQP + \angle BQP$$
$$= 67\frac{1}{2}^{\circ} + 67\frac{1}{2}^{\circ} = 135^{\circ}$$


76. (c)

$$\Rightarrow \frac{8 \times 3}{2} = 2 + x \quad \Rightarrow x = 10 \ cm$$

77. (a) Given, PO = 10cm, OT = 6cmPB = 5cm

In \triangle *OTP*,

⇒
$$(OP)^2 = (PT)^2 + (OT)^2$$

⇒ $(10)^2 = (PT)^2 + 6^2$ ⇒ $PT = 8cm$

From properties of circle,

$$\Rightarrow (PT)^2 = PB \times PC$$

$$\Rightarrow 64 = 5 \times (BC + 5) \Rightarrow 5BC = 39$$

$$\Rightarrow BC = 7.8 \text{ cm}$$

- **78.** *(c)* Mean age of minor children = 5 years
- **79.** (b) Median age of minor children = 5 years
- **80.** (*d*) 1,3,5,7,9, x, 15,17 Total number of terms = 8

Median =

$$\Rightarrow \frac{\frac{8}{2}th\ term\ + \left(\frac{8}{2} + 1\right)th\ term}{2}$$

$$\Rightarrow \frac{4th \ term + 5th \ term}{2} = \frac{7+9}{2} = 8$$

Distribution is arranged in ascending order So, $9 \le x \le 15$

- **81.** (*d*) Pie chart
- **82.** (a) For an ogive, the cumulative frequencies are plotted as a upper limit of class intervals.
- **83.** (b) Let speed of train and car are x, y respectively

$$\frac{120}{x} + \frac{480}{y} = 11$$

$$\Rightarrow \frac{200}{x} + \frac{400}{y} = \frac{35}{3}$$

$$\Rightarrow \text{Upon solving } x = 40, \ y = 60$$

$$\Rightarrow x: y = 2:3$$

- 84. (d) Let CP be ₹100x 106x - 94x = 6. $\Rightarrow 12x = 6$ x = 0.5, 100x = ₹50
- **85.** (d) $1\% = \frac{24}{2} = 12$

Hence, Principal = 1200

86. (d)
$$\frac{x+x+x+x}{\frac{x}{100} + \frac{x}{200} + \frac{x}{300} + \frac{x}{400}}$$

$$\frac{4x}{12x+6x+4x+3x} = \frac{4x \times 1200}{25x} = 192$$

87. (b) Milk content in 1st vessel = $\frac{1}{4}$ water content = $\frac{3}{4}$

Milk content in 2nd vessel = $\frac{3}{8}$

water content $=\frac{5}{8}$

Milk content in mixture drawn from both

$$\Rightarrow 3 \times \frac{1}{4} + \frac{3}{8} \times 2 = \frac{3}{2}$$
Water content = $3 \times \frac{3}{4} + 2 \times \frac{5}{8} = \frac{7}{2}$

88. (b) Given, 50 % (x-y) = 40 % (x+y), $\Rightarrow \frac{50}{100} \times (x-y) = \frac{40}{100} \times (x+y)$

$$\Rightarrow 5x - 5y = 4x + 4y$$

Ratio = $\frac{3}{2}$: $\frac{7}{2}$ = 3:7

$$\Rightarrow x = 9y$$

Let
$$a\%$$
 of $x = y$

$$\Rightarrow \frac{a}{100} \times 9y = y \quad \Rightarrow r = \frac{100}{9} = 11\frac{1}{9}\%$$

89. (c) After 1st hit ball height will be $\frac{1}{2} \times 64$ After 2nd hit ball height will be $\left(\frac{1}{2}\right)^2 \times 64$ After 16th hit ball height will be $\left(\frac{1}{2}\right)^{16}$ (64) = $\frac{1}{2^{16}} \times 2^6 = 2^{-10}$

90. (d)
$$(\sqrt{7} - \sqrt{2})^2 = 7 + 2 - 2 \times \sqrt{7 \times 2}$$
 $\Rightarrow 9 - 2\sqrt{14}$

- **91.** (b) 3.292929... = 3.29 is a non-terminating repeating decimal. Then, it is a rational number.
- 92. (b) Using k = -1 $(-k)^2 - 5k + 6 = (-k)^2 - 8k + 15$ $\Rightarrow 3k = 9, k = 3$
- 93. (d) X completes a round in inch 252 sec.
 Y completes a round in inch 308 sec.
 Z completes a round in inch 198 sec.
 L.C.M of 252, 308 and 198 = 2×2×3×3×7×11 = 2772 sec.
 = 46 min. 12 sec.
- 94. (a) Let two numbers are 12a and 12b. Such that H.C.F = 12. then L.C.M = 12ab Here, L.C.M of these two number must be divisible by 12.

'80' is not divisible by 12, so can not be L.C.M

95. *(b)* Let Madhukar received the information *x* hour before 2p.m.

Last Madhukar received information

$$\Rightarrow \frac{3}{4} + x = \frac{13}{4}$$

$$\Rightarrow x = \frac{13}{4} - \frac{3}{4} = \frac{5}{2} = 2\frac{1}{2}$$
Next meeting will be held

Hence Madhukar received information $2\frac{1}{2}$ hours before 2 p.m. i.e 11 : 30 a.m.

- 96. (b) Let original number be x $8x - \frac{x}{8} = 2016$ $\Rightarrow \left(\frac{63x}{8}\right) = 2016 \Rightarrow x = 256$
- 97. (c) As per divisibility rule of 9, 4444 when divided by 9 will leave remainder 7
 44444 can be written as 74444 We know that for 7, If number is x^{4k}, Last Digit is 1
 Hence, we can write 74444 as 7¹
 7 when divided by 9 will leave the remainder 7
- **98.** (c) We know that for 7, If number is x^{4k+1} , Last Digit is 7

99. (*d*) Given number is 222222.

Sum of digits = 2 + 2 + 2 + 2 + 2 + 2 = 12which is divisible by 3. So, number is also divisible by 3. Sum of odd terms of digits – Sum of even terms of digits = 6 - 6 = 0, it is divisible by 11.

In a number a digit repeated six times, then this number is divisible by 7 Hence, the given number is divisible by 3, 7 and 11

100. (b) x = 14a + 7 = 15b + 5. For smallest value of x, two number a & b should be minimum and when a = 2 = b. Then, $x = 14 \times 2 + 7 = 35$