CDS MATHEMATICS PAPER 1

1) B	2) C	3) C	4) D	5) A
6) A	7) B	8) B	9) B	10) A
11) A	12) D	13) C	14) B	15) A
16) C	17) C	18) B	19) B	20) A
21) C	22) D	23) B	24) C	25) C
26) B	27) C	28) C	29) B	30) B
31) C	32) B	33) C	34) C	35) C
36) B	37) B	38) B	39) B	40) A
41) B	42) C	43) A	44) C	45) A
46) C	47) A	48) B	49) D	50) D
51) C	52) C	53) C	54) D	55) C
56) A	57) B	58) A	59) A	60) B
61) D	62) C	63) D	64) C	65) D
66) A	67) B	68) C	69) B	70) C
71) B	72) C	73) B	74) B	75) A
76) D	77) B	78) B	79) B	80) C
81) B	82) D	83) D	84) B	85) B
86) A	87) A	88) C	89) B	90) A
91) B	92) C	93) C	94) D	95) D
96) C	97) C	98) C	99) C	100) B

ANSWER KEY

HINTS & SOLUTION

- 1. (b) Difference = Sum of digit at odd place - Sum of digit at even place 5. =(1+5+9+4) - (2+4+3)=19-9=10In 10, we must add at least 1 so that it is divisible by 11. So x = 1Also, the sum of digits of 1254934 =1+2+5+4+9+3+4=281254934 will be divisible by 3, after adding y, if the value of y is - 1. So, x = 1 and y = -1 is the set of values for x and y.
- (c) Sum of all the digits in the number 26492518 = 2+6+4+9+2+5+1+8 = 37 When we subtract 4 from 37 then number will be divisible by 3 & 33 will not be divisible by 9

3. (c) HM =
$$\frac{2AB}{A+B} = \frac{2P}{S}$$

4. (d)
$$\sqrt{\frac{x}{y}} = \frac{10}{3} - \sqrt{\frac{y}{x}}$$
 can be written
as $\sqrt{\frac{x}{y}} = \frac{10}{3} - \frac{1}{\sqrt{\frac{x}{y}}}$
Let $\sqrt{\frac{x}{y}} = z$, Hence, $z = \frac{10}{3} - \frac{1}{z}$
 $\Rightarrow 3z^2 - 10z + 3 = 0$ Therefore, $z = 3$
We can say $\sqrt{\frac{x}{y}} = 3$,

Upon squaring both sides we get, $\frac{x}{y} = 9 \text{ or } x = 9y$

We also know that x - y = 8Equating both we get x = 9, y = 1 5. (a)

Let us sav minute hand travelled x minutes Hour hand is OA. Minute hand is OB Angle between hour and minute hand, shown by BOA is θ Now, If the minute hand and hour hand have interchanged the places then OA hour hand will take place of OB traveling at angle θ OB minute hand will take place of OA clockwise traveling $360^{\circ} - \theta$ We know that Minute hand moves 6 degrees every minute So, If minute hand travelled *x minutes* $6x = 360 - \theta$ Hour hand moves 0.5 degrees every minute. Therefore, $0.5x = \theta$ Solving both equations we get x = 55.38

6. (a)

$$n = 5q + 2$$

$$3n = 3(5q + 2)$$

$$3n = 15q + 6$$

$$3n = 5(3q + 1) + 1$$

7. (b) $(n-1)^{2} + n^{2} + (n+1)^{2} + (n+2)^{2}$ =294 $4n^2 + 4n + 6 = 294$

Therefore, n = 7Numbers are 7, 8, 9 and 10

8. (b) Given that, $a^2 - b^2 = 35$

$$(a+b)(a-b) = 35$$

There can only two pairs as we know that only 7×5 and 35×1 will be 35. (6,1) as $6^2 - 1^2 = 35$ (18,17) as $18^2 - 17^2 = 35$

- (b)24=12×2, 36=12×3, 48=12×4, 72=12×6 HCF (24, 36, 48, 72) = 12 Total pieces = 2+3+4+6 = 15
- 10. (a) LCM of 2, 4, 6, 8 and 10 is 120 Therefore, we can say that all bells ring together at the same time after 120 seconds or 2 mins Hence, in 20 minutes, all the bell will ring together 10 times
- 11. (a) Let 1^{st} number = x , Let 2^{nd} number = y Also, LCM=16HCF, LCM + HCF = 850 LCM×HCF = Product of numbers = $x \times y$ We know x = 50. Therefore upon solving we get, y = 800

12. (d)
$$\frac{LCM \text{ of } 1, 5, 2, 4}{HCF \text{ of } 3, 6, 9, 27} = \frac{20}{3}$$

13. (c) LCM of these numbers will be $3 \times 2 \times 2 \times 5 \times 3 \times 7 = 1260$

We can see that only 5 & 7 don't have pair. Hence, to make least perfect square we will multiply 1260 with 5 and 7

 $1260 \times 5 \times 7 = 44100$

14. (b) We can write it as
$$\sqrt{\frac{64 \times 625}{81 \times 484}}$$

 $\sqrt{\frac{(8 \times 25)^2}{(9 \times 22)^2}} = \frac{8 \times 25}{9 \times 22} = \frac{100}{99}$

- **15.** (*a*) Decimal expansion of a rational number is terminating.
- 16. (c) Upon solving option (c) , it gives -5which is integer. $\left[\left(\sqrt{2} + \sqrt{3}\right)/\left(\sqrt{2} - \sqrt{3}\right)\right] + 2\sqrt{6}$ By conjugate property, we can write $\left[\frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} - \sqrt{3}} \times \frac{\sqrt{2} + \sqrt{3}}{\sqrt{2} + \sqrt{3}}\right] + 2\sqrt{6}$ $\left[\frac{5 + 2\sqrt{6}}{2 - 3}\right] + 2\sqrt{6}$ $-5 - 2\sqrt{6} + 2\sqrt{6} = -5$
- 17. (c) Squaring option (c), we get $\left(\sqrt{2}\right)^2 + \left(\sqrt{7}\right)^2 + 2 \times \sqrt{2} \times \sqrt{7}$ $2 + 7 + 2 \times \sqrt{2} \times \sqrt{7}$ $9 + 2\sqrt{14}$
- **18.** (a) $11^3 = m^n : m = 11$, n = 3 $(m - 1)^{(n-1)} = 10^2 = 100$
- 19. (a) Let the number be x. Given that $x^2 + \frac{1}{x^2} = 3\left(x^2 - \frac{1}{x^2}\right)$ $2x^2 = \frac{4}{x^2} \Rightarrow x^4 = 2 \Rightarrow x = 2^{\frac{1}{4}}$
- **20.** (a) Area of rectangle = Length \times breadth. If length is increased by 10% and area remains constant then breadth will decrease

$$\frac{110}{100}l \times b\frac{100}{110} = K$$
Percentage decrease in breadth
$$\frac{b - \frac{100b}{110}}{b} \times 100 = \frac{100}{11}\%$$

21. (c) Volume of a cylinder =
$$\frac{1}{3}\pi r^2 h$$

Volume after increase =
$$\frac{1}{3}\pi \left(\frac{120}{100} r\right)^2 \times \left(\frac{120}{100} h\right)$$

$$\Rightarrow \frac{1}{3}\pi \times \frac{6}{5}r \times \frac{6}{5}r \times \frac{6}{5}h$$
$$\Rightarrow \frac{72}{125}\pi r^{2}h$$

Percentage increase =
$$\frac{\frac{72}{125}\pi r^2 h - \frac{1}{3}\pi r^2 h}{\frac{1}{3}\pi r^2 h}$$

$$\Rightarrow \frac{\frac{216\pi r^{2}h - 125\pi r^{2}h}{375}}{\frac{1}{3}\pi r^{2}h} = \frac{3 \times 91 \pi r^{2}h}{375 \pi r^{2}h}$$

$$\Rightarrow \frac{273}{375} = 73\%$$

- 22. (d) Given that $x = \frac{k}{y^2}$, x = 1, y = 6 $\therefore k = 36$ Given if y = 3, $x = \frac{k}{y^2}$ $\Rightarrow x = \frac{36}{3^2} = \frac{36}{9} = 4$
- 23. (b) Let present age of mother and daughter be x and y.
 2 years ago (x 2) = 8(y 2)

DEFENCE DIRECT EDUCATION

- $\Rightarrow (x 8y) = -14$ 1 year after, (x + 1) = 5(y + 1) $\Rightarrow x - 5y = 4$ On solving y = 6, x = 34Given that after z years. Mother will be three times the daughter $34 + z = 3(6 + z) \Rightarrow z = 8$ years
- 24. (c) Let the number of coins of 50 paise ,1 rupee and 2 rupee coins are 2x, 3x & 4xrespectively. Value of 50 paise coins = x Value of 1 coin = 3xValue of 2 coins = 8xAccording to the question, $x + 3x + 8x = 240 \implies x = 20$ Hence, total coins are 2x + 3x + 4x $\implies 9x = 9 \times 20 = 180$
- 25. (c) Let x number be added to 49 : 68, then it becomes 3:4 $\frac{49+x}{68+x} = \frac{3}{4}$ 196+4x = 204+3x $\Rightarrow x = 8$
- 26. (b) Let the average of 5 innings = x Scores in 6th inning = 80. Hence, Total of 5 innings = 5x According to the question, $\frac{5x + 80}{6} = x + 5$ $\Rightarrow 5x + 80 = 6x + 30$ $\Rightarrow x = 80 - 30 = 50$ Average after six innings = 50 + 5 = 55
- 27. (c) Let x kg of tea be 9 Rupee per kg

$$\frac{9 \times x + 13.5 \times 100}{x + 100} = 11$$
$$\Rightarrow 9x + 1350 = 11x + 1100$$
$$\Rightarrow 2x = 250$$
$$\Rightarrow x = 125 \ kg$$

- 28. (c) Since, 5th term = average of 9 numbers = x Sum of first five larger numbers = 68×5 = 340 Sum of first five smaller numbers = 44×5 = 220 Average of 9 numbers = $\frac{340 + 220 - x}{9}$ (Since, x is subtracted because 5th term is repeated twice) $x = \frac{560 - x}{9}$ $\Rightarrow 9x + x = 560 \Rightarrow x = 56$ Sum of 9 numbers = $56 \times 9 = 504$
- 29. (b) Total borrowed money = ₹40000 Rate of interest = 8% 2 years interest = $\frac{40000 \times 8 \times 2}{100}$ = 6400 Let he be paid ₹x at the end of second year Interest will be calculated on ₹(40000 - x + 6400) Interest for 3 years = $\frac{(46400 - x) \times 3 \times 8}{100}$ $\frac{6}{25}(46400 - x)$ $\Rightarrow \frac{6}{25}(46400 - x) + 46400 - x = 35960$ $\Rightarrow 11136 - \frac{6x}{25} + 46400 - x = 35960$ $\Rightarrow \frac{31x}{25} = 21576 \Rightarrow x = 17400$

- 30. (b) $\frac{\log(x)}{\log(y)} \times T$ $\Rightarrow \frac{\log(8)}{\log(2)} \times 4 = \frac{\log_2(3)}{\log_2(1)} \times 4$ $\Rightarrow \frac{3}{1} \times 4 = 12$
- 31. (c) Let the cost price of the watch = ₹x After 40% marked price and 10% discount 1.4x - 0.14x = 1.26xHence, profit = 0.26x Tax of 10% was paid on the profit 0.26x - 0.026x = 0.234xGiven that, 0.234x = 468 $\frac{234}{468}x = 468$. x = 2000
- 32. (b) Two successive discounts will be $36+4-\frac{36\times4}{100}=38.56\%$ Difference between discounts = 40% – 38.56%=1.44%Amount will be = $10000 \times \frac{1.44}{100}=144$
- 33. (c) Let the total distance of the journey be x km According to the question $\frac{x}{2}$ $\frac{x}{70}$ = 10 $\Rightarrow \frac{7x + 3x}{210} = 20$ $x = 2 \times 210 = 420$ km
- 34. (c) Let speed of bike be v km. Time taken = $\frac{200}{v}$ Time taken to cover 400 km at speed of (v+5) km = $\frac{200}{(v+5)}$

$$\frac{200}{v} - \frac{200}{v+5} = 2$$
$$\Rightarrow v^2 + 5v - 500 = 0$$
$$\Rightarrow v = 20$$

35. (c) Let us assume speed of X as 5 m/s Therefore, speed of Y will be 6 m/s Time taken by Y to cover 1.2 km race $\frac{1200}{6} = 200 \text{ sec}$ Time taken by X to cover 1.2 km race $\frac{1200 - 70}{5} = \frac{1130}{5} = 226 \text{ sec}$ So, Y wins the race by 26 seconds

Distance travelled by X in 26 seconds

 $26 \times 5 = 130m$

- 36. (b) Let the number of men be n. $\frac{n}{42} = \frac{25}{14} \implies n = 75$
- 37. (b) One day work of A = $\frac{1}{8}$ One day work of B = $\frac{1}{12}$ 3 day work of A = $\frac{3}{8}$ Remaining work of A = $1 - \frac{3}{8} = \frac{5}{8}$ One day work of A & B together = $\frac{1}{8} + \frac{1}{12} = \frac{5}{24}$ Days required to finish the remaining work = $\frac{5/8}{5/24} = 3$

38. (b)
$$\frac{x}{p} = \frac{m}{m+r} \Rightarrow x = \frac{mp}{m+r}$$

39. (b)

$$\left(\frac{\log(2)}{\log\left(\frac{1}{2}\right)}\right)\left(\frac{\log(3)}{\log\left(\frac{1}{3}\right)}\right)\left(\frac{\log(4)}{\log\left(\frac{1}{4}\right)}\right)\dots\dots\left(\frac{\log(1000)}{\log\left(\frac{1}{1000}\right)}\right)$$

$$\Rightarrow \left(\frac{\log(2)}{-\log(2)}\right)\left(\frac{\log(3)}{-\log(3)}\right)\left(\frac{\log(4)}{-\log(4)}\right)\dots\left(\frac{\log(1000)}{-\log(1000)}\right)$$

$$\Rightarrow (-1)(-1)(-1)\dots(-1) = -1$$

$$\log\left(\frac{5}{8}\right)^{2} + \log\left(\frac{128}{125}\right) + \log\left(\frac{5}{2}\right)$$
$$\Rightarrow \log\left(\frac{5^{2} \times 128 \times 5}{8^{2} \times 125 \times 2}\right) = \log\frac{5^{2} \times 2^{7} \times 5}{(2^{3})^{2} \times 5^{3} \times 2}$$
$$\Rightarrow \log\left(\frac{2^{7} \times 5^{3}}{2^{6} \times 5^{3} \times 2}\right) = \log\frac{2^{7} \times 5^{3}}{2^{7} \times 5^{3}} = \log 1 = 0$$

41. (b) Given $x = \frac{k}{2}$ satisfies the equation

$$3\left(\frac{k}{2}\right)^{3} - k\left(\frac{k}{2}\right)^{2} + 4\left(\frac{k}{2}\right) + 16 = 0$$

$$\Rightarrow \frac{3k^{3} - 2k^{3} + 16k + 128}{8} = 0$$

$$\Rightarrow k^{3} + 16k + 128 = 0$$

$$\Rightarrow (k+4)(k^{2} - 4k + 32) = 0$$

$$\Rightarrow (k+4)(k+32) =$$
$$\Rightarrow k+4 = 0 \Rightarrow k = -4$$

42. (c) $x^{4} + xy^{3} + xz^{3} + x^{3}y + y^{4} + yz^{3}$ $\Rightarrow x(x^{3} + y^{3} + z^{3}) + y(x^{3} + y^{3} + z^{3})$ $\Rightarrow (x + y)(x^{3} + y^{3} + z^{3})$ Hence, $(x^{3} + y^{3} + z^{3})$ is factor of $x^{4} + xy^{3} + xz^{3} + x^{3}y + y^{4} + yz^{3}$

43. (a) Given, x + y + z = 2s $\Rightarrow (s - x) + (s - y) - z = 2s - (x + y + z)$ = 2s - 2s = 0 $(s - x)^3 + (s - y)^3 - z^3 + 3(s - x)$ (s - y)(z) = 0 $\Rightarrow (s - x)^3 + (s - y)^3 + 3(s - x)$ $(s - y)(z) = z^3$

44. (c)

$$(p+q)(p^2+q^2-pq)-r^3$$

 $(p+q)[(p+q)^2-3pq]-r^3$
Given, $p+q=r$, $pqr=30$
 $r\left[r^2-3\times\frac{30}{r}\right]-r^3$
 r^3-90-r^3

- **45.** (a) Only Using x = 1 satisfies the equation
- 46. (c) Given, ab b + 1 = 0. $\Rightarrow b(a-1) = -1$ $\Rightarrow b = \frac{1}{1-a}$ (i) Also, bc - c + 1 = 0 $\Rightarrow b = \frac{-1+c}{c}$ (ii)

DEFENCE DIRECT EDUCATION

From equations (i) and (ii)

$$\frac{1}{1-a} = \frac{-1+c}{c} \Rightarrow c = (1-a)(-1+c)$$
$$\Rightarrow c = -1+c+a-ac \Rightarrow a-ac=1$$

- 47. (a) Given, x + y + z = 6, xy + yz + zx = 11Therefore, $x^3 + y^3 + z^3 - 3xyz$ $(x + y + z) (x + y + z)^2 - 3(xy + yz + zx)$ $\Rightarrow 6(6^2 - 3(11)) = 6 \times 3 = 18$
- 48. (b) Let S = {....-4, -2, 0, 2, 4, ...}
 I. Now, (-2) + 2 = 0 which is even integer
 II. (-2) 2 = -4 which is even integer
 III. (-2) × 2 = -4 which is even integer
 IV. (-2) / 2 = -1 which is odd integer
- 49. (d) Let a two digit number be (10x + y)and reversing number be (10y + x)Therefore, Required sum = 10x + y + 10y + x= 11x + 11y = 11(x + y)Hence, it is divisible by 11
- **50.** *(d)* Suppose there are *x* passengers at start Number of passengers after 1st halt

$$\left(x - \frac{x}{3}\right) + 120 = \frac{2x}{3} + 120$$

Number of passengers after 2nd halt

$$\frac{1}{2} \left(\frac{2x}{3} + 120 \right) + 100 = 240$$

$$\Rightarrow \frac{2x}{3} + 120 = (240 - 100) \times 2$$

$$\Rightarrow \frac{2x}{3} = 280 - 120 \Rightarrow x = 240$$

51. (c) Let the price of each book be $\gtrless x$ and the number of book is $y \therefore xy = 80$ (y+4)(x-1) = 80

$$\Rightarrow xy - y + 4x - 4 = 80$$

$$\Rightarrow 80 - y + 4x = 84$$

$$\Rightarrow 4x - y = 4 \Rightarrow y = 4(x - 1)$$

We know $xy = 80$

$$4(x - 1)(x) = 80$$

$$x^2 - x - 20 = 0 \Rightarrow x = 5$$

52. (c) Let the number be y $\frac{y}{3} = \frac{y}{4} + 8$ $\Rightarrow \frac{4y - 3y}{12} = 8$ $\Rightarrow y = 12 \times 8 = 96$

Sum of digits = 9 + 6 = 15

53. (c) Given,
$$a1 = 4, b1 = 2, c1 = 0$$

 $a2 = 6, b2 = 3, c2 = 0$
 $\frac{a1}{a2} = \frac{b1}{b2}$

Therefore,
$$\frac{4}{6} = \frac{2}{3} \Rightarrow \frac{2}{3} = \frac{2}{3}$$

$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$

$$\Rightarrow \frac{1}{a+b+x} - \frac{1}{x} = \frac{1}{a} + \frac{1}{b}$$

$$\Rightarrow \frac{-(a+b)}{(a+b+x)x} = \frac{(a+b)}{ab}$$

$$\Rightarrow x^{2} + (a+b)x + ab = 0$$

$$(x+a)(x+b) = 0$$

$$x = -a, -b$$

55. (c) Let $\sqrt{\frac{x}{1-x}} = y$

DEFENCE DIRECT EDUCATION

$$y + \frac{1}{y} = \frac{13}{6} \Rightarrow (y^2 + 1) 6 = 13y$$
$$\Rightarrow 6y^2 - 13y + 6 = 0$$
$$\Rightarrow y = \frac{2}{3}, \frac{3}{2}$$

Putting value of y in x

$$y = \frac{2}{3} \Rightarrow \frac{x}{1-x} = \frac{4}{9}$$
$$\Rightarrow 9x = 4 - 4x$$
$$\Rightarrow x = \frac{4}{13}$$

Putting value of y as $\frac{5}{2}$ in x

we get
$$x = \frac{9}{13}$$

56. (a) Given, $px^2 + qx + r = 0$ α, β are the roots of the equation According to question $\beta = 2\alpha$ $\alpha\beta = \frac{r}{p} = 2\alpha^2$ $\alpha^2 = \frac{r}{2p}$ $\alpha + \beta = -\frac{q}{p} = 3\alpha \Rightarrow \alpha = -\frac{q}{3p}$ $\left(\frac{q}{3p}\right)^2 = \frac{r}{2p} \Rightarrow 2q^2 = 9pr$

57. (b)

$$\sqrt{\frac{2x}{3-x}} - \sqrt{\frac{3-x}{2x}} = \frac{3}{2}$$

Let $\sqrt{\frac{2x}{3-x}} = a$
 $a - \frac{1}{a} = \frac{3}{2}$

$$\Rightarrow 2(a^{2}-1) = 3a$$
$$\Rightarrow 2a^{2}-3a-2=0 \Rightarrow a=2$$
$$\Rightarrow \sqrt{\frac{2x}{3-x}} = 2$$

 \Rightarrow Squaring both the sides we get

 $2x = 12 - 4x \implies x = 2$

58. (a)

$$\{(A \cup B) \cap A\} - (A - B) \\= \{(U - (A \cup B)) \cap A\} - (A - B) \\= \{(U \cap A) - \{(A \cup B) \cap A\}\} - (A - B) \\= \{A - A\} - (A - B) \\= \phi - (A - B) = \phi$$

- **59.** (a) $A = \{0,9,54,243....\}$ $B = \{0,9,18,27,36,45,54....\}$ Hence, $A \subset B$
- **60.** (*b*) $\{\emptyset\}$ is an element of $\{\{\emptyset\}, \{\{\emptyset\}\}\}\$
- 61. (d) $n(P\cup M) = n(P) + n(M) n(P\cap M)$ ⇒ 50 + 75 - 35 =90 $n(P\cup M)' = U - n(P\cup M)$ ⇒ 250 - 90 = 160

62. (c)

$$\sec\theta = \frac{13}{5} \Rightarrow \sec^2\theta = \frac{169}{25}$$

 $\Rightarrow 1 + \tan^2\theta = \frac{169}{25}$
 $\Rightarrow \tan^2\theta = \frac{144}{25} = \frac{12}{5}$
 $\Rightarrow \frac{2\sin\theta - 3\cos\theta}{4\sin\theta - 9\cos\theta} = \frac{2\frac{\sin\theta}{\cos\theta} - 3}{4\frac{\sin\theta}{\cos\theta} - 9}$

DEFENCE DIRECT EDUCATION

$$\Rightarrow \frac{2\tan\theta - 3}{4\tan\theta - 9} = \frac{2\left(\frac{12}{5}\right) - 3}{4\left(\frac{12}{5}\right) - 9} = \frac{24 - 15}{48 - 45} = 3$$

- 63. (d) Squaring both the sides we get $\sin^2 + \cos^2\theta 2\sin\theta\cos\theta = 1$
 - $\Rightarrow 1 2\sin\theta\cos\theta = 1$ $\Rightarrow 1 \sin2\theta = 1$

 $\Rightarrow \sin 2\theta = 0$ Hence, θ is 0 & we can say $0^\circ \le \theta \le 90^\circ$

- 64. (c) $\left(\cos^2\frac{\pi}{8} + \sin^2\frac{\pi}{8}\right) + 4\cos^2\frac{\pi}{8} - \sec\frac{\pi}{3} + 5\tan^2\frac{\pi}{3}$ $\Rightarrow 1 + 4 \times \left(\frac{1}{\sqrt{2}}\right)^2 - 2 + 5\left(\sqrt{3}\right)^2$ $\Rightarrow 1 + 2 - 2 + 15 = 16$
- 65. (d) when $\theta = 90^{\circ}$, $\sin \theta + \csc \theta = 2$ $\Rightarrow 1 + 1 = 2$ Similarly, keeping $\theta = 90^{\circ}$ in $sin^{4}\theta + cos^{4}\theta$, we get 1 + 0 = 1
- 66. (a) $3 \sin \theta + 4 \cos \theta = 5$ Squaring both the sides we get $9 \sin^2 \theta + 16 \cos^2 \theta + 24 \sin \theta \cos \theta$ = 25 $9(1 - \cos^2 \theta) + 16 (1 - \sin^2 \theta)$ $+ 24 \sin \theta \cos \theta = 25$ $9 \cos^2 \theta + 16 \sin^2 \theta + 24 \sin \theta \cos \theta = 0$ $\Rightarrow (3 \cos \theta - 4 \sin \theta)^2 = 0$ $\Rightarrow (3 \cos \theta - 4 \sin \theta) = 0$

67. (b)
$$0 \le \sin^2 x \le 1$$

 $0 \le \sin^{10} x \le 1$
 $0 \le p \le 1$

68. (c) $\sin 46^{\circ} \cos 44^{\circ} + \cos 46^{\circ} \sin 44^{\circ}$

- $\Rightarrow \sin 46^{\circ} \sin(90^{\circ} 44^{\circ}) + \cos 46^{\circ} \cos(90^{\circ} 44^{\circ})$ $\Rightarrow \sin^2 46^{\circ} + \cos^2 46^{\circ} = 1$
- 69. (b) Let the height of the tower be h and BC = x

In $\triangle ABC$, $\tan 60^\circ = h/x \implies h = \sqrt{3}x$ In $\triangle ADB$, $\tan 30^\circ = h/40+x$ $h = \frac{40+x}{\sqrt{3}}$ $\sqrt{3}x = \frac{40+x}{\sqrt{3}} \Rightarrow 2x = 40 \Rightarrow x = 20$

70. (*c*) Let OP be the height of the tower x = distance between O and F

In \triangle FOP, $\tan 60^\circ = \frac{75}{x} \Rightarrow x = \frac{75}{\sqrt{3}} = 25\sqrt{3}$

In a regular hexagon ΔOEF , ΔOED are equilateral triangles.

 $\therefore \text{ OF} = \text{AF} = \text{AB} = \text{BC} = \text{CD} = \text{DE} = \text{EF} = 25\sqrt{3} \text{ m}$

Length of hexagon = $25\sqrt{3}$ m

72. (c)

In $\triangle AOD$,

$$\tan 30^\circ = \frac{OD}{AD} = \frac{1}{\sqrt{3}} \quad \Rightarrow OD = \frac{1}{\sqrt{3}} AD$$

 $\Rightarrow OD = \frac{1}{\sqrt{3}}AD = \frac{a}{2\sqrt{3}}$

Now, OD "r" is radius of circle. Therefore diagonal of square = $2r = 2 \times \frac{a}{2\sqrt{3}} = \frac{a}{\sqrt{3}}$ Let side of the square be s We know diagonal = $\sqrt{2} s$ $\Rightarrow \frac{a}{\sqrt{3}} = \sqrt{2} s$ $\Rightarrow s = \frac{a}{\sqrt{6}} \Rightarrow s^2 = \frac{a^2}{6}$

73. (b) Let side of S1 & S2 be a & bPerimeter of S1 = 4aPerimeter of S2 = 4bArea of S1 = a^2 Area of S2 = b^2 $\Rightarrow 4a = 4b + 12$ $\Rightarrow a = b + 3$ $\Rightarrow a^2 = 3(b^2) - 11$ $\Rightarrow (b + 3)^2 = 3b^2 - 11$ $\Rightarrow b^2 + 9 + 6b = 3b^2 - 11$ $\Rightarrow 2b^2 - 6b - 20 = 0$ $\Rightarrow b^2 - 3b - 10 = 0$ $\Rightarrow b = 5$, Perimeter of S1 = 32

74. (b) We know that angle made by minute hand of a clock in a minute is 6° Hence, angle made in 15 mins = 90° distance = $2\pi r \times \frac{\theta}{360^{\circ}}$ $\Rightarrow 2 \times \frac{22}{2} \times 14 \times \frac{90}{2} = 22$

$$\Rightarrow 2 \times \frac{22}{7} \times 14 \times \frac{30}{360} = 2$$

75. (a)

Given, Area of circle = 4p

$$\Rightarrow \pi r^{2} = 4\pi = r = 2 \text{ cm}$$

$$\Rightarrow \text{In } \Delta \text{ OAD, } \tan 30^{\circ} = \frac{\text{OD}}{\text{AD}}$$

$$\Rightarrow \text{AD} = 2\sqrt{3}$$
AB = 2 AD, Hence, AB = $4\sqrt{3}$
Area of equilateral Δ ABC,

$$\Rightarrow \frac{\sqrt{3}}{4} (\text{AB})^{2} = \frac{\sqrt{3}}{4} (4\sqrt{3})^{2}$$

$$\Rightarrow 12\sqrt{3}$$

In
$$\triangle$$
 ABC, $AC^2 = \sqrt{28^2 + 21^2} = 35$
Area of shaded portion = Area of semi-
circle ACE + Area of $\triangle ABC$ - Area of

circle ACE + Area of $\triangle ABC$ – Area of quadrant circle BCD

$$\Rightarrow \frac{\pi r^2}{2} + \frac{1}{2} \times BC \times BA - \frac{\pi}{4} \times r^2$$
$$\Rightarrow \frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times \frac{1}{2} + \frac{1}{2} \times 21 \times 28 - \frac{22}{7} \times \frac{1}{4} \times 21 \times 21$$
$$\Rightarrow 428.75$$

77. (b) Since, the distance covered by a man diagonally is

$$d = \frac{3 \times 100}{60} \times 1 = 50m$$

CDS MATHEMATICS PAPER 1

Area of field =
$$\frac{1}{2}d^2 = \frac{1}{2} \times 50^2 = 1250$$

78. (b) $27 \times \text{Volume of smaller drops} = \text{Volume of bigger drop}$

$$27 \times \frac{4}{3} \pi r^{3} = \frac{4}{3} \pi R^{3}$$
$$\Rightarrow 27 \times (0.2)^{3} = R^{3}$$
$$\Rightarrow (3 \times 0.2)^{3} = R^{3}$$
$$\Rightarrow R = 0.6$$

79. (b) Let r be the radius of hemispherical bowl.

$$2\pi r = \frac{132}{7}$$

$$\Rightarrow r = \frac{132}{7} \times \frac{7}{2 \times 22} = 3$$

Volume of hemispherical bowl = $\frac{2}{3}\pi r^{3}$
 $\frac{2}{3}\pi \times 3^{3} = 18\pi$

80. (b) Let the radii and slant height of two right circular cone are r_1 , l_1 and r_2 , l_2 respectively. Ratio of curved surface area = $\pi r \cdot l \cdot l$.

$$\frac{\pi r_1 l_1}{\pi r_2 l_2} = \frac{l_1}{l_2} = 3:2$$

- 81. (b) Perimeter = 4a = 20 a = 5Volume of cube = $a^3 = 125$
- 82. (d) Volume of wire = $\pi r^2 h$ New radius of wire = $\frac{r \times 90}{90} = \frac{9r}{10}$ Let new length of wire be L

DEFENCE DIRECT EDUCATION

Volume of new wire =

$$\pi \left(\frac{9r}{10}\right)^2 \times L = \frac{81}{100} \pi r^2 L$$
According to the question,

$$\pi r^2 h = \frac{81}{100} \pi r^2 L \Rightarrow L = \frac{100}{81} h$$
Increase in length = $\frac{100}{81} h - h = \frac{19}{81} h$
Percentage increase = $\frac{\frac{19h}{81h}}{h} \times 110 = 23\%$

- 83. (d) Let x be the diameter of moon. Required ratio = $\frac{volume \ of \ moon}{volume \ of \ earth}$ $\Rightarrow \frac{\frac{4}{3}\pi\left(\frac{x}{8}\right)^3}{\frac{4}{3}\pi\left(\frac{x}{2}\right)^3} = \frac{1}{64}$
- 84. (b) Let the angle be x, then supplement angle is $(180^\circ - x)$ $\Rightarrow x = \frac{1}{5}(180 - x) \Rightarrow 5x = 180 - x$ $\Rightarrow x = \frac{180}{6} = 30$
- 85. (b) $AC \parallel BD$ $\angle DBA = 180 - 130 = 50$ Since, DBG is a straight line $\angle DBA + \angle ABF + \angle FBG = 180$ $\Rightarrow 50 + \angle ABF + 60 = 180$ $\Rightarrow \angle ABF = 70$ Since, $AE \parallel BF$ $x = 180 - \angle ABF = 110$

86. (*a*) A bisector AY is drawn of $\angle A \And \angle C$

Every side of $\triangle DEF$ is double of $\triangle ABC$ Hence, we can say $\frac{AL}{DM} = \frac{1}{2}$

88. (c)

 $\triangle ABC$ is a right angled triangle at A

 $AD \perp BC$, then according to triangle property $\triangle ABC \sim \triangle ADC \sim \triangle ADB$

89. (*b*) Let each base angle of isosceles triangle be *x*

Vertical angle of isosceles triangle = $x + 15^{\circ}$ We know that, $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow x + 15^{\circ} + x + x = 180^{\circ}$ $\Rightarrow 3x = 165^{\circ} \Rightarrow x = 55^{\circ}$

90. (a) Given that, $\angle SPQ = 150^\circ$, PM = 20In parallelogram PQRS,

$$\angle RSP + \angle SPQ = 180^{\circ}$$
$$\angle RSP = 180^{\circ} - 150^{\circ} = 30^{\circ}$$
$$\angle RSP = 30^{\circ}$$
S
$$\frac{M}{\sqrt{\theta}}$$

In ΔPSM , $\angle S$ sin 30 = $\frac{PM}{SP}$

$$\Rightarrow \frac{1}{2} = \frac{20}{SP} \Rightarrow SP = 40cm$$

$$RQ = SP = 40cm$$

91. (b) ABCD is a trapezium. AD//BC & EF//BC (given) Hence, EF//AD $\angle x + \angle y = 180^{\circ}$ $\angle y = 180^{\circ} - 120^{\circ} = 60^{\circ}$

CDS MATHEMATICS PAPER 1

- **92.** *(c)* The quadrilateral formed by joining the mid-points of the sides is a parallelogram.
- **93.** (c) Given $\angle PAQ = 59^{\circ}$, $\angle APD = 40^{\circ}$ $\angle ADP = 180^{\circ} - 59^{\circ} - 40^{\circ} = 81^{\circ}$ $\angle ADC + \angle ABC = 180^{\circ} - 81^{\circ} = 99^{\circ}$ Now, In $\triangle ABQ$, $\angle ABQ + \angle BAQ + \angle ABQ = 180^{\circ}$ $\angle ABQ = 180^{\circ} - 158^{\circ} = 22^{\circ}$
- 94. (d) It is given that, $\angle AOB = 100^{\circ}$

Reflex $\angle AOB = 360^\circ - \angle AOB = 260^\circ$ $\Rightarrow \angle ACB = \frac{\text{Reflex} \angle AOB}{2} = \frac{260}{2} = 130$

- **95.** (d) The variables are 210, 201, 102, 20, 12, 10, 2, 1 and 0 $GM = \sqrt[9]{210 \times 201 \times 102 \times 20 \times 12 \times 10 \times 2 \times 1 \times 0}$ $\Rightarrow \sqrt[9]{0} = 0$
- **96.** (*c*) Here, maximum frequency is 80, hence mode will be between 15-20.
- 97. (c) Let the observation mean = x Sum of 50 Observations = 50xAccording to the question, $\frac{50x - 45}{49} = x$ $\Rightarrow 50x - 45 = 49x$ $\Rightarrow x = 45$

98. (c) Mode can be obtained from a histogram.

99. (c) Given,

$$\frac{x}{40+15+x+12+23} \times 360 = 36^{\circ}$$

$$\Rightarrow \frac{x}{90x} = \frac{36^{\circ}}{360^{\circ}}$$

$$\Rightarrow x = 10$$

100.(b) For District A: Maximum frequency = 59Modal class = 44-47 $l = 44, f_1 = 59, f_0 = 36, f_2 = 30,$ Mode = $l + \frac{f_1 - f_0}{2f_1 - f_1 - f_0} \times h$ $\Rightarrow 44 + \frac{59 - 36}{2 \times 50} \times 3$ $\Rightarrow 44 + \frac{23}{52} \times 3 = 44 + 1.33 = 45.33$ For District B: Maximum frequency = 54Modal class = 47-50 $l = 47, f_1 = 54, f_0 = 35, f_2 = 41,$ h = 3Mode = $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ $\Rightarrow 47 + \frac{54 - 35}{2 \times 54 - 35 - 41} \times 3$ $\Rightarrow 44 + \frac{19}{32} \times 3 = 47 + 1.78 = 45.33$ Mode of District B > Mode of District A